Akandeh M, Shishehbor P (2011) Life history traits of melon ladybeetle, Epilachna Chrysomelina (Col.: Coccinellidae), on four host plant species. J Entomol Soc Iran 31:17–27
Al Bitar L, Gorb SN, Zebitz CPW, Voigt D (2014) Egg adhesion of the codling moth Cydia Pomonella L. (Lepidoptera, Tortricidae) to various substrates: II. Fruit surfaces of different apple cultivars. Arthropod Plant Interact 8:57–77
Ali M, Al-Hemaid F (2011) Taxonomic significance of trichomes micromorphology in cucurbits. Saudi J Biol Sci 18:87–92
Arzt E, Gorb S, Spolenak R (2003) From micro to nano contacts in biological attachment devices. Proc Natl Acad Sci U S A 100:10603–10606
Article CAS PubMed PubMed Central Google Scholar
Atkin DSJ, Hamilton RJ (1982) The effects of plant waxes on insects. J Nat Prod 45:694–696
Bargel H, Koch K, Cerman Z, Neinhuis C (2006) Structure-function relationships of the plant cuticle and cuticular waxes – a smart material? Funct Plant Biol 33:893–910
Article CAS PubMed Google Scholar
Barnes JD, Cardoso-Vilhena J (1996) Interactions between electromagnetic radiation and the plant cuticle. In: Kerstiens G (ed) Plant cuticles, an Integrated Approach. Bios Scientific, Oxford, UK, pp 157–170
Barthlott W, Neinhuis C (1997) Purity of the sacred lotus or escape from contamination in biological surfaces. Planta 202:1–7
Barthlott W, Neinhuis C, Cutler D, Ditsch F, Meusel I, Theisen I, Wilhelmi H (1998) Classification and terminology of plant epicuticular waxes. Bot J Linn Soc 126:237–260
Bauchhenß E (1979) Die Pulvillen Von Calliphora Erythrocephala Meig. (Diptera, Brachycera) als Adhäsionsorgane. Zoomorphology 93:99–123
Bauchhenß E, Renner M (1977) Pulvillus of Calliphora Erythrocephala Meig (Diptera; Calliphoridae). Int J Insect Morphol Embryol 6:225–227
Betz O (2003) Structure of the tarsi in some Stenus species (Coleoptera, Staphylinidae): external morphology, ultrastructure, and tarsal secretion. J Morphol 255:24–43
Betz O, Mumm R (2001) The predatory legs of Philonthus Marginatus (Coleoptera, Staphylinidae): functional morphology and tarsal ultrastructure. Arthropod Struct Dev 30:77–97
Article CAS PubMed Google Scholar
Betz O, Frenzel M, Steiner M, Vogt M, Kleemeier M, Hartwig M, Sampalla B, Rupp F, Boley M, Schmitt C (2017) Adhesion and friction of the smooth attachment system of the cockroach grom- phadorhina portentosa and the influence of the application of fluid adhesives. Biol Open 6:589–601
Article CAS PubMed PubMed Central Google Scholar
Beutel R, Gorb SN (2001) Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. J Zoolog Syst Evol Res 39:177–207
Bodnaryk RP (1992) Leaf epicuticular wax, an antixenotic factor in Brassicaceae that affects the rate and pattern of feeding in flea beetles, Phyllotreta cruciferae (Goeze). Can J Plant Sci 72:1295–1303
Borodich FM, Gorb EV, Gorb SN (2010) Fracture behaviour of plant epicuticular wax crystals and its role in preventing insect attachment: a theoretical approach. Appl Phys A 100:63–71
Brennan EB, Weinbaum SA (2001) Effect of epicuticular wax on adhesion of psyllids to glaucous juvenile and glossy adult leaves of Eucalyptus globulus Labillardière. Aust J Entomol 40:270–277
Büscher TH, Gorb SN (2021) Physical constraints lead to parallel evolution of micro- and nanostructures of animal adhesive pads: a review. Beilstein J Nanotechnol 12:725–743. https://doi.org/10.3762/bjnano.12.57
Article CAS PubMed PubMed Central Google Scholar
Büscher T, Lohar R, Kaul MC, Gorb SN (2020) Multifunctional adhesives on the eggs of the leaf insect phyllium philippinicum (Phasmatodea: Phylliidae): solvent influence and biomimetic implications. Biomimetics 5:66
Article PubMed PubMed Central Google Scholar
CABI (2018) Ceratitis capitata. Invasive Species Compendium. CAB International Wallingford. www.cabi.org/isc
Chang GC, Neufeld J, Eigenbrode SD (2006) Leaf surface wax and plant morphology of peas influence insect density. Entomol Exp Appl 119:197–205
Clemente CJ, Federle W (2008) Pushing versus pulling: division of labour between tarsal attachment pads in cockroaches. Proc R Soc B 275:1329–1336
Article PubMed PubMed Central Google Scholar
Colazza S, Bin F (1995) Efficiency of Trissolcus basalis (Hymenoptera: Scelionidae) as an egg parasitoid of Nezara viridula (Heteroptera: Pentatomidae) in Central Italy. Environ Entomol 24:1703–1707
Dai Z, Gorb SN, Schwarz U (2002) Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). J Exp Biol 205:2479–2488
Del Buono D, Di Michele A, Costantino F, Trevisan M, Lucini L (2021) Biogenic ZnO nanoparticles synthesized using a novel plant extract: application to enhance physiological and biochemical traits in maize. Nanomaterials 11:1270
Article PubMed PubMed Central Google Scholar
Eberhard MJB, Pass G, Picker MD, Beutel R, Predel R, Gorb SN (2009) Structure and function of the arolium of Mantophasmatodea (Insecta). J Morph 270:1247–1261
Edwards JS, Tarkanian M (1970) The adhesive pads of Heteroptera: a re-examination. Proc R Entomol Soc Lond A 45:1–5
Eimüller T, Guttmann P, Gorb SN (2008) Terminal contact elements of insect attachment devices studied by transmission X-ray microscopy. J Exp Biol 211:1958–1963
Eisner T, Aneshansley DJ (2000) Defense by foot adhesion in a beetle (Hemisphaerota cyanea). Proc Natl Acad Sci U S A 9:6568–6573
England MW, Sato T, Yagihashi M, Hozumi A, Gorb SN, Gorb EV (2016) Surface roughness rather than surface chemistry essentially affects insect adhesion. Beilstein J Nanotechnol 7:1471–1479
Article CAS PubMed PubMed Central Google Scholar
Féat A, Federle W, Kamperman M, van der Gucht J (2019) Coatings preventing insect adhesion: an overview. Prog Org Coat 134:349–359
Federle W, Brainerd EL, McMahon TA, Hölldobler B (2001) Biomechanics of the movable pretarsal adhesive organ in ants and bees. Proc Natl Acad Sci U S A 98:6215–6220
Article CAS PubMed PubMed Central Google Scholar
Federle W, Riehle M, Curtis ASG, Full RJ (2002) An integrative study of insect adhesion: mechanics and wet adhesion of pretarsal pads in ants. Integr Comp Biol 42:1100–1106
Fürstner R, Barthlott W, Neinhuis C, Walzel P (2005) Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir 21:956–961
Garcia S, Garcia C, Heinzen H, Moyna P (1997) Chemical basis of the resistance of barley seeds to pathogenic fungi. Phytochem 44:415–418
Gaume L, Gorb S, Rowe N (2002) Function of epidermal surfaces in the trapping efficiency of Nepenthes alata pitchers. New Phytol 156:476–489
Gaume L, Perret P, Gorb E, Gorb S, Labat J-J, Rowe N (2004) How do plant waxes cause flies to slide? Experimental tests of wax-based trapping mechanisms in the three pitfall carnivorous plants. Arthropod Struct Dev 33:103–111
Article CAS PubMed Google Scholar
Geiselhardt SF, Geiselhardt S, Peschke K (2009) Comparison of tarsal and cuticular chemistry in the leaf beetle Gastrophysa Viridula (Coleoptera: Chrysomelidae) and an evaluation of solid-phase microextraction and solvent extraction techniques. Chemoecology 19:85–193
Gepp VJ (1977) Hindrance of arthropods by trichomes of bean plants (Phaseolus vulgaris L). Anz Schädlkd Pflanzenschutz Umwelts- chutz 50:8–12
Ghazi-Bayat A (1979) Zur Oberflächenstruktur Der Tarsalen Haftlappen Von Coreus marginatus (L.) (Coreidae, Heteroptera). Zool Anz 203:345–347
Ghazi-Bayat A, Hasenfuss I (1980) Zur Herkunft Der Adhäsionsflüssigkeit Der Tarsalen Haftlappen bei den Pentatomidae (Heteroptera). Zool Anz 204:13–18
Glenn DM, Puterka GJ (2005) Particle films: a new technology for agriculture. Hort Rev 31:1–44
Gorb SN (1998) The design of the fly adhesive pad: distal tenent setae are adapted to the delivery of an adhesive secretion. Proc R Soc Lond B 265:747–752
Gorb SN (2001) Attachment devices of insect cuticle. Kluwer Academic, Dordrecht
Gorb SN, Filippov AE (2014) Fibrillar adhesion with no clusterisation: functional significance of material gradient along adhesive setae of insects. Beilstein J Nanotechnol 5:837–846
Comments (0)