Abrieux A, Xue Y, Cai Y, Lewald KM, Nguyen HN, Zhang Y, Chiu JC (2020) Eyes absent and timeless integrate photoperiodic and temperature cues to regulate seasonal physiology in Drosophila. Proc Natl Acad Sci U S A 117:15293–15304. https://doi.org/10.1073/pnas.2004262117
Article CAS PubMed PubMed Central Google Scholar
Colizzi FS, Martínez-Torres D, Helfrich-Förster C (2023) The circadian and photoperiodic clock of the pea aphid. J Comp Physiol A. https://doi.org/10.1007/s00359-023-01660-8
Denlinger DL (2022) Insect diapause. Cambridge University Press, Cambridge. https://doi.org/10.1017/9781108609364
Gibbs D (1975) Reversal of pupal diapause in Sarcophaga argyrostoma by temperature shifts after puparium formation. J Insect Physiol 21:1179–1186. https://doi.org/10.1016/0022-1910(75)90085-2
Article CAS PubMed Google Scholar
Goto SG (2022) Photoperiodic time measurement, photoreception, and circadian clocks in insect photoperiodism. Appl Entomol Zool 57:193–212. https://doi.org/10.1007/s13355-022-00785-7
Hasebe M, Kotaki T, Shiga S (2022) Pigment-dispersing factor is involved in photoperiodic control of reproduction in the brown-winged green bug, Plautia stali. J Insect Physiol 137:104359. https://doi.org/10.1016/j.jinsphys.2022.104359
Article CAS PubMed Google Scholar
Helfrich-Förster C (2024) Neuropeptidergic regulation of insect diapause by the circadian clock. Curr Opin Insect Sci 63:101198. https://doi.org/10.1016/j.cois.2024.101198
Hermann C, Saccon R, Senthilan PR, Domnik L, Dircksen H, Yoshii T, Helfrich-Förster C (2013) The circadian clock network in the brain of different Drosophila species. J Comp Neurol 521:367–388. https://doi.org/10.1002/cne.23178
Article CAS PubMed Google Scholar
Hidalgo S, Anguiano M, Tabuloc CA, Chiu JC (2023) Seasonal cues act through the circadian clock and pigment-dispersing factor to control EYES ABSENT and downstream physiological changes. Curr Biol 33:675–687e5. https://doi.org/10.1016/j.cub.2023.01.006
Article CAS PubMed PubMed Central Google Scholar
Hodkova M (2015) Why is the number of days required for induction of adult diapause in the linden bug Pyrrhocoris apterus fewer in the larval than. Adult Stage? J Insect Physiol 77:39–44. https://doi.org/10.1016/j.jinsphys.2015.04.001
Huang X, Poelchau MF, Armbruster PA (2015) Global transcriptional dynamics of diapause induction in non-blood-fed and blood-fed Aedes albopictus. PLoS Negl Trop Dis 9:e0003724. https://doi.org/10.1371/journal.pntd.0003724
Article CAS PubMed PubMed Central Google Scholar
Kostál V (2006) Eco-physiological phases of insect diapause. J Insect Physiol 52:2113–2127. https://doi.org/10.1016/j.jinsphys.2005.09.008
Koštál V, Mollaei M, Schöttner K (2016) Diapause induction as an interplay between seasonal token stimuli, and modifying and directly limiting factors: hibernation in Chymomyza costata. Physiol Entomol 41:344–357. https://doi.org/10.1111/phen.12159
Koštál V, Štětina T, Poupardin R, Korbelová J, Bruce AW (2017) Conceptual framework of the eco-physiological phases of insect diapause development justified by transcriptomic profiling. Proc Natl Acad Sci U S A 114:8532–8537. https://doi.org/10.1073/pnas.1707281114
Article CAS PubMed PubMed Central Google Scholar
Kotwica-Rolinska J, Damulewicz M, Chodakova L, Kristofova L, Dolezel D (2022) Pigment dispersing factor is a circadian clock output and regulates photoperiodic response in the Linden bug, Pyrrhocoris apterus. Front Physiol 13:884909. https://doi.org/10.3389/fphys.2022.884909
Kurogi Y, Imura E, Mizuno Y, Hoshino R, Nouzova M, Matsuyama S, Mizoguchi A, Kondo S, Tanimoto H, Noriega FG, Niwa R (2023) Female reproductive dormancy in Drosophila melanogaster is regulated by DH31-producing neurons projecting into the corpus allatum. Development 150:dev201186. https://doi.org/10.1242/dev.201186
Article CAS PubMed PubMed Central Google Scholar
Lankinen P, Tyukmaeva VI, Hoikkala A (2013) Northern Drosophila montana flies show variation both within and between cline populations in the critical day length evoking reproductive diapause. J Insect Physiol 59:745–751. https://doi.org/10.1016/j.jinsphys.2013.05.006
Article CAS PubMed Google Scholar
Lankinen P, Kastally C, Hoikkala A (2022) Plasticity in photoperiodism: Drosophila montana females have a life-long ability to switch from reproduction to diapause. J Biol Rhythms 37:516–527. https://doi.org/10.1177/07487304221108968
Manoli G, Zandawala M, Yoshii T, Helfrich-Förster C (2023) Characterization of clock-related proteins and neuropeptides in Drosophila littoralis and their putative role in diapause. J Comp Neurol 531:1525–1549. https://doi.org/10.1002/cne.25522
Article CAS PubMed Google Scholar
Nagy D, Cusumano P, Andreatta G, Anduaga AM, Hermann-Luibl C, Reinhard N, Gesto J, Wegener C, Mazzotta G, Rosato E, Kyriacou CP, Helfrich-Förster C, Costa R (2019) Peptidergic signaling from clock neurons regulates reproductive dormancy in Drosophila melanogaster. PLoS Genet 15:e1008158. https://doi.org/10.1371/journal.pgen.1008158
Article CAS PubMed PubMed Central Google Scholar
Poelchau MF, Reynolds JA, Elsik CG, Denlinger DL, Armbruster DL (2013a) RNA-Seq reveals early distinctions and late convergence of gene expression between diapause and quiescence in the Asian tiger mosquito, Aedes albopictus. J Exp Biol 216:4082–4090. https://doi.org/10.1242/jeb.089508
Article CAS PubMed PubMed Central Google Scholar
Poelchau MF, Reynolds JA, Elsik CG, Denlinger DL, Armbruster DL (2013b) Deep sequencing reveals complex mechanisms of diapause preparation in the invasive mosquito, Aedes albopictus. Proc Biol Sci 280:20130143. https://doi.org/10.1098/rspb.2013.0143
Article PubMed PubMed Central Google Scholar
Poupardin R, Schöttner K, Korbelová J, Provazník J, Doležel D, Pavlinic D, Beneš V, Koštál V (2015) Early transcriptional events linked to induction of diapause revealed by RNAseq in larvae of drosophilid fly, Chymomyza costata. BMC Genomics 16:720. https://doi.org/10.1186/s12864-015-1907-4
Article CAS PubMed PubMed Central Google Scholar
Ragland GJ, Fuller J, Feder JL, Hahn DA (2009) Biphasic metabolic rate trajectory of pupal diapause termination and post-diapause development in a tephritid fly. J Insect Physiol 55:344–350. https://doi.org/10.1016/j.jinsphys.2008.12.013
Article CAS PubMed Google Scholar
Ragland GJ, Egan SP, Feder JL, Berlocher SH, Hahn DA (2011) Developmental trajectories of gene expression reveal candidates for diapause termination: a key life-history transition in the apple maggot fly Rhagoletis pomonella. J Exp Biol 214:3948–3959. https://doi.org/10.1242/jeb.061085
Ritz C, Baty F, Streibig JC, Gerhard D (2015) Dose-Response Anal Using R PLoSOne 10:e0146021. https://doi.org/10.1371/journal.pone.0146021
Salminen TS, Hoikkala A (2013) Effect of temperature on the duration of sensitive period and on the number of photoperiodic cycles required for the induction of reproductive diapause in Drosophila montana. J Insect Physiol 59:450–457. https://doi.org/10.1016/j.jinsphys.2013.02.005
Article CAS PubMed Google Scholar
Salminen TS, Vesala L, Laiho A, Merisalo M, Hoikkala A, Kankare M (2015) Seasonal gene expression kinetics between diapause phases in Drosophila virilis group species and overwintering differences between diapausing and non-diapausing females. Sci Rep 5:11197. https://doi.org/10.1038/srep11197
Article CAS PubMed PubMed Central Google Scholar
Saunder DS (2002) Insect clocks. Elsevier, Amsterdam
Saunders DS (1978) Internal and external coincidence and the apparent diversity of photoperiodic clocks in the insects. J comp Physiol 127:197–207. https://doi.org/10.1007/BF01350110
Saunders DS (1981) Insect photoperiodism - the clock and the counter: a review. Physiol Entomol 6:99–116
Comments (0)