Ache JM, Namiki S, Lee A, Branson K, Card GM (2019) State-dependent decoupling of sensory and motor circuits underlies behavioral flexibility in Drosophila. Nat Neurosci 22:1132–1139. https://doi.org/10.1038/s41593-019-0413-4
Article CAS PubMed PubMed Central Google Scholar
Agarwal A, Sarel A, Derdikman D, Ulanovsky N, Gutfreund Y (2023) Spatial coding in the hippocampus and hyperpallium of flying owls. Proc Natl Acad Sci USA 120:e2212418120. https://doi.org/10.1073/pnas.2212418120
Article CAS PubMed PubMed Central Google Scholar
Babies B, Lindemann JP, Egelhaaf M, Möller R (2011) Contrast-independent biologically inspired motion detection. Sensors 11:3303–3326. https://doi.org/10.3390/s110303303
Article PubMed PubMed Central Google Scholar
Bastian J (1976) Frequency response characteristics of electroreceptors in weakly electric fish (Gymnotoidei) with a pulse discharge. J Comp Physiol 112:165–180
Behnia R, Clark DA, Carter AG, Clandinin TR, Desplan C (2014) Processing properties of ON and OFF pathways for Drosophila motion detection. Nature 512:427–430. https://doi.org/10.1038/nature13427
Article CAS PubMed PubMed Central Google Scholar
Bell C, von der Emde G (1995) Electric organ corollary discharge pathways in mormyrid fish. J Comp Physiol A 177:463–479. https://doi.org/10.1007/BF00187482
Biester EM, Hellenbrand J, Gruber J, Hamberg M, Frentzen M (2012) Identification of avian wax synthases. BMC Biochem 13:4. https://doi.org/10.1186/1471-2091-13-4
Article CAS PubMed PubMed Central Google Scholar
Borst A, Groschner LN (2023) Spatial correlation, input asymmetry and multiplication as fundamental characteristic as determined from behavior. How flies see motion. Ann Rev Neurosci 46:17–37. https://doi.org/10.1146/annurev-neuro-080422-111929
Article CAS PubMed Google Scholar
Borst A, Haag J, Mauss AS (2020) How fly neurons compute the direction of visual motion. J Comp Physiol A 206:109–124. https://doi.org/10.1007/s00359-019-01375-9
Boumans M, Krings M, Wagner H (2015) Muscular arrangement and muscle attachment sites in the cervical region of the American barn owl (Tyto furcata pratincola). PLoS ONE 10:e0134272. https://doi.org/10.1371/journal.pone.0134272
Article CAS PubMed PubMed Central Google Scholar
Bullock TH, Bodznick DA, Northcutt RG (1983) The phylogenetic distribution of electroreception: Evidence for convergent evolution of a primitive vertebrate sense modality. Brain Res Rev 6:25–46. https://doi.org/10.1016/0165-0173(83)90003-6
Carr CE, Konishi M (1990) A circuit for detection of interaural time differences in the brainstem of the barn owl. J Neurosci 10:3227–3246. https://doi.org/10.1523/JNEUROSCI.10-10-03227.1990
Article CAS PubMed PubMed Central Google Scholar
Carr CE, Heiligenberg W, Rose G (1986) The detection of small temporal disparities in the weakly electric fish Eigenmannia. J Neurosci 6:107–119. https://doi.org/10.1523/JNEUROSCI.06-01-00107.1986
Article CAS PubMed PubMed Central Google Scholar
Cazettes F, Fischer BJ, Pena JL (2014) Spatial cue reliability drives frequency tuning in the barn owl’s midbrain. Elife 3:e04854. https://doi.org/10.7554/eLife.04854
Article PubMed PubMed Central Google Scholar
Cellini B, Mongeau JM (2020) Active vision shapes and coordinates flight motor responses in flies. Proc Nat Acad Sci USA 117:23085–23095. https://doi.org/10.1073/pnas.1920846117
Article CAS PubMed PubMed Central Google Scholar
Changeux JP (2020) Discovery of the first neurotransmitter receptor: the acetylcholine nicotinic receptor. Biomolecules 10:547. https://doi.org/10.3390/biom10040547
Article CAS PubMed PubMed Central Google Scholar
Cheng KY, Frye MA (2020) Neuromodulation of insect motion vision. J Comp Physiol A 206:125–137. https://doi.org/10.1007/s00359-019-01383-9
Cheong HS, Siwanowicz I, Card GM (2020) Multi-regional circuits underlying visually guided decision-making in Drosophila. Curr Opin Neurobiol 65:77–87. https://doi.org/10.1016/j.conb.2020.10.010
Article CAS PubMed Google Scholar
Clark CJ, LePiane K, Liu L (2020) Evolutionary and ecological correlates of quiet flight in nightbirds, hawks, falcons, and owls. Integr Comp Biol 60:1123–1134. https://doi.org/10.1093/icb/icaa039
Clarke SE, Longtin A, Maler L (2015) Contrast coding in the electrosensory system: parallels with visual computation. Nat Rev Neurosci 16:733–744. https://doi.org/10.1038/nrn4037
Article CAS PubMed Google Scholar
Collett TS (1980) Some operating rules for the optomotor system of a hoverfly during voluntary flight. J Comp Physiol 138:271–282. https://doi.org/10.1007/BF00657045
Collett TS, Land MF (1975) Visual control of flight behaviour in the hoverfly (Syritta pipiens L.). J Comp Physiol 99:1–66. https://doi.org/10.1007/BF01464710
Currier TA, Pang MM, Clandinin TR (2023) Visual processing in the fly, from photoreceptors to behavior. Genetics 224:iyad064. https://doi.org/10.1093/genetics/iyad064
Article PubMed PubMed Central Google Scholar
Darwin (1872) The origin of species by means of natural selection, 6th edn. Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/CBO9780511694295
Das S, Dodda A, Das S (2019) A biomimetic 2D transistor for audiomorphic computing. Nat Commun 10:3450. https://doi.org/10.1038/s41467-019-11381-9
Article CAS PubMed PubMed Central Google Scholar
De Kok-Mercado F, Habib M, Phelps T, Gregg L, Gailloud P (2013) Adaptations of the owl’s cervikal & cephalic arteries in relation to extreme neck rotation. Science 339:514–515
du Lac S, Knudsen EI (1990) Neural maps of head movement vector and speed in the optic tectum of the barn owl. J Neurophysiol 63:131–146. https://doi.org/10.1152/jn.1990.63.1.131
Egelhaaf M (2023) Optic flow based spatial vision in insects. J Comp Physiol A 209:541–561. https://doi.org/10.1007/s00359-022-01610-w
Fenk LM, Kim AJ, Maimon G (2021) Suppression of motion vision during course-changing, but not course-stabilizing, navigational turns. Curr Biol 31:4608–4619. https://doi.org/10.1016/j.cub.2021.09.068
Article CAS PubMed Google Scholar
Ferger R, Shadron K, Fischer BJ, Peña JL (2021) Barn owl’s auditory space map activity matching conditions for a population vector readout to drive adaptive sound-localizing behavior. J Neurosci 41:10305–10315. https://doi.org/10.1523/JNEUROSCI.1061-21.2021
Article CAS PubMed PubMed Central Google Scholar
Fotowat H, Lee C, Jaeyoon Jun C, Maler L (2019) Neural activity in a hippocampus-like region of the teleost pallium is associated with active sensing and navigation. Elife 8:e44119. https://doi.org/10.7554/eLife.44119
Article CAS PubMed PubMed Central Google Scholar
Friedrich RW, Jacobson GA, Zhu P (2010) Circuit neuroscience in zebrafish. Curr Biol 20:R371–R381. https://doi.org/10.1016/j.cub.2010.02.039
Article CAS PubMed Google Scholar
Froemke RC, Young LJ (2021) Oxytocin, neural plasticity, and social behavior. Annu Rev Neurosci 44:359–381. https://doi.org/10.1146/annurev-neuro-102320-102847
Article CAS PubMed PubMed Central Google Scholar
Fukutomi M, Carlson BA (2020) A history of corollary discharge: contributions of mormyrid weakly electric fish. Front Integr Neurosci 14:42. https://doi.org/10.3389/fnint.2020.00042
Article PubMed PubMed Central Google Scholar
Hassenstein B, Reichardt W (1956) Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z Naturforschung B 11:513–524. https://doi.org/10.1515/znb-1956-9-1004
Hausen K (1981) Monocular and binocular computation of motion in the lobula plate of the fly. Verh Dtsch Zool Ges 1981:49–70
Hausmann L, von Campenhausen M, Endler F, Singheiser M, Wagner H (2009) Improvements of sound-localization capabilities by the facial ruff of the barn owl (Tyto alba) as demonstrated by virtual ruff removal. PLoS ONE 4:e7721. https://doi.org/10.1371/journal.pone.0007721
Comments (0)