Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998).
Article CAS PubMed PubMed Central Google Scholar
Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).
Article CAS PubMed Google Scholar
Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018). This study is a global survey of the soil bacteria and fungi revealing the importance of both environmental filtering and niche differentiation in determining the soil microbial composition.
Article CAS PubMed Google Scholar
Keiluweit, M., Wanzek, T., Kleber, M., Nico, P. & Fendorf, S. Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nat. Commun. 8, 1771 (2017).
Article PubMed PubMed Central Google Scholar
Schuur, Ea. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).
Article CAS PubMed Google Scholar
Schimel, J. & Schaeffer, S. Microbial control over carbon cycling in soil. Front. Microbiol. 3, 348 (2012).
Article CAS PubMed PubMed Central Google Scholar
Fowler, D. et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20130164 (2013).
Article PubMed PubMed Central Google Scholar
Barker, W. W. & Banfield, J. F. Biologically versus inorganically mediated weathering reactions: relationships between minerals and extracellular microbial polymers in lithobiontic communities. Chem. Geol. 132, 55–69 (1996).
Doetterl, S. et al. Links among warming, carbon and microbial dynamics mediated by soil mineral weathering. Nat. Geosci. 11, 589–593 (2018).
Napieralski, S. A. et al. Microbial chemolithotrophy mediates oxidative weathering of granitic bedrock. Proc. Natl Acad. Sci. USA 116, 26394–26401 (2019).
Article CAS PubMed PubMed Central Google Scholar
Finlay, R. D. et al. Reviews and syntheses: biological weathering and its consequences at different spatial levels — from nanoscale to global scale. Biogeosciences 17, 1507–1533 (2020).
Sokol, N. W. et al. Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nat. Rev. Microbiol. 20, 415–430 (2022).
Article CAS PubMed Google Scholar
Moreau, D., Bardgett, R. D., Finlay, R. D., Jones, D. L. & Philippot, L. A plant perspective on nitrogen cycling in the rhizosphere. Funct. Ecol. 33, 540–552 (2019).
Schimel, J. P. & Bennett, J. Nitrogen mineralization: challenges of a changing paradigm. Ecology 85, 591–602 (2004).
Geisseler, D., Horwath, W. R., Joergensen, R. G. & Ludwig, B. Pathways of nitrogen utilization by soil microorganisms — a review. Soil Biol. Biochem. 42, 2058–2067 (2010).
Husson, O. Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a transdisciplinary overview pointing to integrative opportunities for agronomy. Plant Soil 362, 389–417 (2013).
Bolan, N. S. & Hedley, M. J. Role of carbon, nitrogen, and sulfur cycles in soil acidification. in Handbook of Soil Acidity (CRC Press, 2003).
Sánchez-Cañete, E. P., Barron-Gafford, G. A. & Chorover, J. A considerable fraction of soil-respired CO2 is not emitted directly to the atmosphere. Sci. Rep. 8, 13518 (2018).
Article PubMed PubMed Central Google Scholar
Mergelov, N. et al. Alteration of rocks by endolithic organisms is one of the pathways for the beginning of soils on Earth. Sci. Rep. 8, 3367 (2018).
Article PubMed PubMed Central Google Scholar
Gadd, G. M. et al. Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. Fungal Biol. Rev. 28, 36–55 (2014).
Jones, D. L., Dennis, P. G., Owen, A. G. & van Hees, P. A. W. Organic acid behavior in soils — misconceptions and knowledge gaps. Plant Soil 248, 31–41 (2003).
Hervé, V., Junier, T., Bindschedler, S., Verrecchia, E. & Junier, P. Diversity and ecology of oxalotrophic bacteria. World J. Microbiol. Biotechnol. 32, 28 (2016).
Syed, S., Buddolla, V. & Lian, B. Oxalate carbonate pathway — conversion and fixation of soil carbon — a potential scenario for sustainability. Front. Plant Sci. 11, 591297 (2020).
Article PubMed PubMed Central Google Scholar
Norton, J. & Ouyang, Y. Controls and adaptive management of nitrification in agricultural soils. Front. Microbiol. 10, 1931 (2019).
Article PubMed PubMed Central Google Scholar
Huet, S. et al. Experimental community coalescence sheds light on microbial interactions in soil and restores impaired functions. Microbiome 11, 42 (2023). This work experimentally demonstrated that depletion of bacterial ammonia oxidizers through community manipulation reduces soil pH.
Article CAS PubMed PubMed Central Google Scholar
Fernandes, T. R., Segorbe, D., Prusky, D. & Di Pietro, A. How alkalinization drives fungal pathogenicity. PLoS Pathog. 13, e1006621 (2017).
Article PubMed PubMed Central Google Scholar
Palmieri, D., Vitale, S., Lima, G., Di Pietro, A. & Turrà, D. A bacterial endophyte exploits chemotropism of a fungal pathogen for plant colonization. Nat. Commun. 11, 5264 (2020).
Article CAS PubMed PubMed Central Google Scholar
Vylkova, S. Environmental pH modulation by pathogenic fungi as a strategy to conquer the host. PLoS Pathog. 13, e1006149 (2017).
Article PubMed PubMed Central Google Scholar
Howarth, R. W., Stewart, J. W. B. & Ivanov, M. V. Sulphur Cycling on the Continents: Wetlands, Terrestrial Ecosystems and Associated Water Bodies (John Wiley & Sons, Ltd, 1992).
Koch, T. & Dahl, C. A novel bacterial sulfur oxidation pathway provides a new link between the cycles of organic and inorganic sulfur compounds. ISME J. 12, 2479–2491 (2018).
Article CAS PubMed PubMed Central Google Scholar
Yang, Z., Haneklaus, S., Ram Singh, B. & Schnug, E. Effect of repeated applications of elemental sulfur on microbial population, sulfate concentration, and pH in soils. Commun. Soil Sci. Plant Anal. 39, 124–140 (2007).
Linder, T. Assimilation of alternative sulfur sources in fungi. World J. Microbiol. Biotechnol. 34, 51 (2018).
Article PubMed PubMed Central Google Scholar
Kappler, A. et al. An evolving view on biogeochemical cycling of iron. Nat. Rev. Microbiol. 19, 360–374 (2021). This study is a comprehensive review of abiotic and biotic processes involved in oxidation of Fe(II) and reduction of Fe(III).
Article CAS PubMed Google Scholar
Vaksmaa, A. et al. Stratification of diversity and activity of methanogenic and methanotrophic microorganisms in a nitrogen-fertilized Italian paddy soil. Front. Microbiol. 8, 2127 (2017).
Article PubMed PubMed Central Google Scholar
Gabriel, G. V. M. et al. Methane emission suppression in flooded soil from Amazonia. Chemosphere 250, 126263 (2020).
Article CAS PubMed Google Scholar
Borch, T. et al. Biogeochemical redox processes and their impact on contaminant dynamics. Environ. Sci. Technol. 44, 15–23 (2010).
Article CAS PubMed Google Scholar
Byrne, J. M. et al. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science 347, 1473–1476 (2015).
Article CAS PubMed Google Scholar
Johnstone, T. C. & Nolan, E. M. Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Trans. 44, 6320–6339 (2015).
Article CAS PubMed PubMed Central Google Scholar
Schalk, I. J., Hannauer, M. & Braud, A. New roles for bacterial siderophores in metal transport and tolerance. Environ. Microbiol. 13, 2844–2854 (2011).
Article CAS PubMed Google Scholar
Gadd, G. M. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156, 609–643 (2010). 2010.
Article CAS PubMed Google Scholar
Samuels, T. et al. in Biogeochemical Cycles 59–79 (American Geophysical Union (AGU), 2020).
Jongmans, A. G. et al. Rock-eating fungi. Nature 389, 682–683 (1997).
Comments (0)