High Expression of LncRNA XIST as an Index Helping to Diagnose Parkinson’s Disease

L. V. Kalia and A. E. Lang, “Parkinson’s disease,” Lancet. 386, No. 9996, 896–912 (2015); doi: https://doi.org/10.1016/S0140-6736(14)61393-3.

Article  CAS  PubMed  Google Scholar 

E. Tolosa, A. Garrido, S. W. Scholz, and W. Poewe, “Challenges in the diagnosis of Parkinson’s0 disease,” Lancet Neurol., 20, No. 5, 385–397; doi: https://doi.org/10.1016/S1474-4422(21)00030-2.

S. Lotankar, K. S. Prabhavalkar, and L. K. Bhatt, “Biomarkers for Parkinson’s disease: Recent advancement,” Neurosci Bull., 33, No. 5, 585–597 (2017); doi: https://doi.org/10.1007/s12264-017-0183-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

M. T. Hayes, “Parkinson's disease and parkinsonism,” Am. J. Med., 132, No. 7, 802–807 (2019); doi: https://doi.org/10.1016/j.amjmed.2019.03.001.

Article  PubMed  Google Scholar 

J. Hixson, J. E. Quintero, A. Guiliani, et al., “Visualization of the movement disorder society unified Parkinson’s disease rating scale results,” J. Parkinsons Dis., 13, No. 3, 421–426 (2023); doi: https://doi.org/10.3233/JPD-225071.

Article  PubMed  PubMed Central  Google Scholar 

I. A. Qureshi and M. F. Mehler, “Long non-coding RNAs: Novel targets for nervous system disease diagnosis and therapy,” Neurotherapeutics, 10, No. 4, 632–646 (2013); doi: https://doi.org/10.1007/s13311-013-0199-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

L. W. Harries, “Long non-coding RNAs and human disease,” Biochem. Soc. Trans., 40, No. 4, 902–906 (2012); doi: https://doi.org/10.1042/BST20120020.

Article  CAS  PubMed  Google Scholar 

T. F. J. Kraus, M. Haider, J. Spanner, et al., “Altered long noncoding RNA expression precedes the course of Parkinson’s disease-a preliminary report,” Mol. Neurobiol., 54, No. 4, 2869–2877 (2017); doi: https://doi.org/10.1007/s12035-016-9854-x.

Article  CAS  PubMed  Google Scholar 

W. Yan, Z. Y. Chen, J. Q. Chen, and H. M. Chen, “LncRNA NEAT1 promotes autophagy in MPTP-induced Parkinson’s disease through stabilizing PINK1 protein,” Biochem. Biophys. Res. Commun., 496, No. 4, 1019–1024 (2018); doi: https://doi.org/10.1016/j.bbrc.2017.12.149.

Article  CAS  PubMed  Google Scholar 

Q. Lin, S. Hou, Y. Dai, et al., “LncRNA HOTAIR targets miR-126-5p to promote the progression of Parkinson’s disease through RAB3IP,” Biol. Chem., 400, No. 9, 1217–1228 (2019); doi: https://doi.org/10.1515/hsz-2018-0431.

Article  CAS  PubMed  Google Scholar 

L. J. Cai, L. Tu, X. M. Huang, et al., “LncRNA MALAT1 facilitates inflammasome activation via epigenetic suppression of Nrf2 in Parkinson’s disease,” Mol. Brain, 13, No. 1, 130 (2020); doi: https://doi.org/10.1186/s13041-020-00656-8.

X. M. Ding, L. J. Zhao, H. Y. Qiao, et al., “Long noncoding RNA-p21 regulates MPP+-induced neuronal injury by targeting miR-625 and derepressing TRPM2 in SH-SY5Y cells,” Chem. Biol. Interact., 307, 73–81 (2019); doi: https://doi.org/10.1016/j.cbi.2019.04.017.

Article  CAS  PubMed  Google Scholar 

G. Pintacuda, A. N. Young, and A. Cerase, “Function by structure: Spotlights on XIST long non-coding RNA,” Front. Mol. Biosci., 4, 90 (2017); doi: https://doi.org/10.3389/fmolb.2017.00090.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Q. Zhou, M. M. Zhang, M. Liu, et al., “LncRNA XIST sponges miR-199a-3p to modulate the Sp1/LRRK2 signal pathway to accelerate Parkinson’s disease progression,” Aging (Albany NY), 13, No. 3, 4115–4137 (2021); doi: https://doi.org/10.18632/aging.202378.

Article  CAS  PubMed  Google Scholar 

W. R. Gibb and A. J. Lees, “The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease,” J. Neurol. Neurosurg. Psychiatry, 51, No. 6, 745–752 (1988); doi: https://doi.org/10.1136/jnnp.51.6.745.

Article  CAS  PubMed  PubMed Central  Google Scholar 

M. Chen, X. Lai, X. Wang, et al., “Long non-coding RNAs and circular RNAs: insights into microglia and astrocyte mediated neurological diseases,” Front. Mol. Neurosci., 14, 745066 (2021); doi: https://doi.org/10.3389/fnmol.2021.745066.

Article  CAS  PubMed  PubMed Central  Google Scholar 

A. G. Sun, J. Wang, Y. Z. Shan, et al., “Identifying distinct candidate genes for early Parkinson’s disease by analysis of gene expression in whole blood,” Neuro. Endocrinol. Lett., 35, No. 5, 398–404 (2014).

CAS  PubMed  Google Scholar 

S. Yang, H. Yang, Y. Luo, et al., “Long non-coding RNAs in neurodegenerative diseases,” Neurochem. Int., 148, 105096 (2021); doi: https://doi.org/10.1016/j.neuint.2021.105096.

Article  CAS  PubMed  Google Scholar 

P. Wu, X. Zuo, H. Deng, et al., “Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases,” Brain Res Bull., 97, 69–80 (2013); doi: https://doi.org/10.1016/j.brainresbull.2013.06.001.

Article  CAS  PubMed  Google Scholar 

J. Cheng, Y. Duan, F. Zhang, et al., “The role of lncRNA TUG1 in the Parkinson disease and its effect on microglial inflammatory response,” Neuromolecular Med., 23, No. 2, 327–334 (2021); doi: https://doi.org/10.1007/s12017-020-08626-y.

Article  CAS  PubMed  Google Scholar 

M. R. Asadi, S. Abed, G. Kouchakali, et al., “Competing endogenous RNA (ceRNA) networks in Parkinson’s disease: A systematic review,” Front. Cell. Neurosci., 17, 1044634 (2023); doi: https://doi.org/10.3389/fncel.2023.1044634.

Article  CAS  PubMed  PubMed Central  Google Scholar 

S. Ghafouri-Fard, M. Safari, M. Taheri, and M. Samadian, “Expression of linear and circular lncRNAs in Alzheimer’s disease,” J. Mol. Neurosci., 72, No. 2, 187–200 (2022); doi: https://doi.org/10.1007/s12031-021-01900-z.

Article  CAS  PubMed  Google Scholar 

J. Bao, W. Chang, and Y. Zhao, “Diagnosis and drug prediction of Parkinson’s disease based on immunerelated genes,” J. Mol. Neurosci., 72, No. 9, 1809–1819 (2022); doi: https://doi.org/10.1007/s12031-022-02043-5.

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif