L. V. Kalia and A. E. Lang, “Parkinson’s disease,” Lancet. 386, No. 9996, 896–912 (2015); doi: https://doi.org/10.1016/S0140-6736(14)61393-3.
Article CAS PubMed Google Scholar
E. Tolosa, A. Garrido, S. W. Scholz, and W. Poewe, “Challenges in the diagnosis of Parkinson’s0 disease,” Lancet Neurol., 20, No. 5, 385–397; doi: https://doi.org/10.1016/S1474-4422(21)00030-2.
S. Lotankar, K. S. Prabhavalkar, and L. K. Bhatt, “Biomarkers for Parkinson’s disease: Recent advancement,” Neurosci Bull., 33, No. 5, 585–597 (2017); doi: https://doi.org/10.1007/s12264-017-0183-5.
Article CAS PubMed PubMed Central Google Scholar
M. T. Hayes, “Parkinson's disease and parkinsonism,” Am. J. Med., 132, No. 7, 802–807 (2019); doi: https://doi.org/10.1016/j.amjmed.2019.03.001.
J. Hixson, J. E. Quintero, A. Guiliani, et al., “Visualization of the movement disorder society unified Parkinson’s disease rating scale results,” J. Parkinsons Dis., 13, No. 3, 421–426 (2023); doi: https://doi.org/10.3233/JPD-225071.
Article PubMed PubMed Central Google Scholar
I. A. Qureshi and M. F. Mehler, “Long non-coding RNAs: Novel targets for nervous system disease diagnosis and therapy,” Neurotherapeutics, 10, No. 4, 632–646 (2013); doi: https://doi.org/10.1007/s13311-013-0199-0.
Article CAS PubMed PubMed Central Google Scholar
L. W. Harries, “Long non-coding RNAs and human disease,” Biochem. Soc. Trans., 40, No. 4, 902–906 (2012); doi: https://doi.org/10.1042/BST20120020.
Article CAS PubMed Google Scholar
T. F. J. Kraus, M. Haider, J. Spanner, et al., “Altered long noncoding RNA expression precedes the course of Parkinson’s disease-a preliminary report,” Mol. Neurobiol., 54, No. 4, 2869–2877 (2017); doi: https://doi.org/10.1007/s12035-016-9854-x.
Article CAS PubMed Google Scholar
W. Yan, Z. Y. Chen, J. Q. Chen, and H. M. Chen, “LncRNA NEAT1 promotes autophagy in MPTP-induced Parkinson’s disease through stabilizing PINK1 protein,” Biochem. Biophys. Res. Commun., 496, No. 4, 1019–1024 (2018); doi: https://doi.org/10.1016/j.bbrc.2017.12.149.
Article CAS PubMed Google Scholar
Q. Lin, S. Hou, Y. Dai, et al., “LncRNA HOTAIR targets miR-126-5p to promote the progression of Parkinson’s disease through RAB3IP,” Biol. Chem., 400, No. 9, 1217–1228 (2019); doi: https://doi.org/10.1515/hsz-2018-0431.
Article CAS PubMed Google Scholar
L. J. Cai, L. Tu, X. M. Huang, et al., “LncRNA MALAT1 facilitates inflammasome activation via epigenetic suppression of Nrf2 in Parkinson’s disease,” Mol. Brain, 13, No. 1, 130 (2020); doi: https://doi.org/10.1186/s13041-020-00656-8.
X. M. Ding, L. J. Zhao, H. Y. Qiao, et al., “Long noncoding RNA-p21 regulates MPP+-induced neuronal injury by targeting miR-625 and derepressing TRPM2 in SH-SY5Y cells,” Chem. Biol. Interact., 307, 73–81 (2019); doi: https://doi.org/10.1016/j.cbi.2019.04.017.
Article CAS PubMed Google Scholar
G. Pintacuda, A. N. Young, and A. Cerase, “Function by structure: Spotlights on XIST long non-coding RNA,” Front. Mol. Biosci., 4, 90 (2017); doi: https://doi.org/10.3389/fmolb.2017.00090.
Article CAS PubMed PubMed Central Google Scholar
Q. Zhou, M. M. Zhang, M. Liu, et al., “LncRNA XIST sponges miR-199a-3p to modulate the Sp1/LRRK2 signal pathway to accelerate Parkinson’s disease progression,” Aging (Albany NY), 13, No. 3, 4115–4137 (2021); doi: https://doi.org/10.18632/aging.202378.
Article CAS PubMed Google Scholar
W. R. Gibb and A. J. Lees, “The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease,” J. Neurol. Neurosurg. Psychiatry, 51, No. 6, 745–752 (1988); doi: https://doi.org/10.1136/jnnp.51.6.745.
Article CAS PubMed PubMed Central Google Scholar
M. Chen, X. Lai, X. Wang, et al., “Long non-coding RNAs and circular RNAs: insights into microglia and astrocyte mediated neurological diseases,” Front. Mol. Neurosci., 14, 745066 (2021); doi: https://doi.org/10.3389/fnmol.2021.745066.
Article CAS PubMed PubMed Central Google Scholar
A. G. Sun, J. Wang, Y. Z. Shan, et al., “Identifying distinct candidate genes for early Parkinson’s disease by analysis of gene expression in whole blood,” Neuro. Endocrinol. Lett., 35, No. 5, 398–404 (2014).
S. Yang, H. Yang, Y. Luo, et al., “Long non-coding RNAs in neurodegenerative diseases,” Neurochem. Int., 148, 105096 (2021); doi: https://doi.org/10.1016/j.neuint.2021.105096.
Article CAS PubMed Google Scholar
P. Wu, X. Zuo, H. Deng, et al., “Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases,” Brain Res Bull., 97, 69–80 (2013); doi: https://doi.org/10.1016/j.brainresbull.2013.06.001.
Article CAS PubMed Google Scholar
J. Cheng, Y. Duan, F. Zhang, et al., “The role of lncRNA TUG1 in the Parkinson disease and its effect on microglial inflammatory response,” Neuromolecular Med., 23, No. 2, 327–334 (2021); doi: https://doi.org/10.1007/s12017-020-08626-y.
Article CAS PubMed Google Scholar
M. R. Asadi, S. Abed, G. Kouchakali, et al., “Competing endogenous RNA (ceRNA) networks in Parkinson’s disease: A systematic review,” Front. Cell. Neurosci., 17, 1044634 (2023); doi: https://doi.org/10.3389/fncel.2023.1044634.
Article CAS PubMed PubMed Central Google Scholar
S. Ghafouri-Fard, M. Safari, M. Taheri, and M. Samadian, “Expression of linear and circular lncRNAs in Alzheimer’s disease,” J. Mol. Neurosci., 72, No. 2, 187–200 (2022); doi: https://doi.org/10.1007/s12031-021-01900-z.
Article CAS PubMed Google Scholar
J. Bao, W. Chang, and Y. Zhao, “Diagnosis and drug prediction of Parkinson’s disease based on immunerelated genes,” J. Mol. Neurosci., 72, No. 9, 1809–1819 (2022); doi: https://doi.org/10.1007/s12031-022-02043-5.
Comments (0)