EMG Activity of the Shoulder Girdle Muscles of Humans after Surgical Refixation of the Ruptured m. Pectoralis Major Tendon under Conditions of Simple Bimanual Motor Acts

M. R. Stringer, A. N. Cockfield, and T. R. Sharpe, “Pectoralis major rupture in an active female,” J. Am. Acad. Orthop. Surg. Glob. Res. Rev., 3, No. 10, PMC6855497 (2019); doi: https://doi.org/10.5435/JAAOSGlobal-D-19-00030.

T. D. Tarity, G. E. Garrigues, M. G. Ciccotti, et al., “Pectoralis major ruptures in professional American football players,” Phys. Sportsmed., 42, No. 3, 131–135 (2014); doi: https://doi.org/10.3810/psm.2014.09.2084.

Article  PubMed  Google Scholar 

K. Thompson, Y. Kwon, E. Flatow, et al., “Everything pectoralis major: from repair to transfer,” Phys. Sportsmed., 48, No. 1, 33–45 (2020); doi: https://doi.org/10.1080/00913847.2019.1637301.

Article  PubMed  Google Scholar 

A. G. Chan, G. C. Balazs, C. A. Haley, et al., “Pectoralis major rupture in military academy athletes,” Orthop. J. Sports Med., 7, No. 7, 2325967119860157 (2019); doi: https://doi.org/10.1177/2325967119860157.

C. A. Haley and M. A. Zacchilli, “Pectoralis major injuries: evaluation and treatment,” Clin. Sports Med., 33, No. 4, 739–756 (2014); doi: https://doi.org/10.1016/j.csm.2014.06.005.

Article  PubMed  Google Scholar 

N. A. Marsh, J. G. Calcei, I. J. Antosh, and F. A. Cordasco, “Isolated tears of the sternocostal head of the pectoralis major muscle: surgical technique, clinical outcomes, and a modification of the Tietjen and Bak classification,” J. Shoulder Elbow Surg., 29, No. 7, 1359–1367 (2020); doi: https://doi.org/10.1016/j.jse.2019.11.024.

Article  PubMed  Google Scholar 

Y. K. Lee, M. R. Skalski, E. A. White, et al., “US and MR imaging of pectoralis major injuries,” Radiographics, 37, No. 1, 176–189 (2017); doi: https://doi.org/10.1148/rg.2017160070.

Article  PubMed  Google Scholar 

M. M. Chiavaras, J. A. Jacobson, J. Smith, and D. L. Dahm, “Pectoralis major tears: anatomy, classification, and diagnosis with ultrasound and MR imaging,” Skeletal Radiol., 44, No. 2, 157–164 (2015); doi: https://doi.org/10.1007/s00256-014-1990-7.

Article  PubMed  Google Scholar 

A. V. Gorkovenko, “Theoretical analysis of the peculiarities of motor control at generation of two-joint isometric efforts by the human upper limb,” Neurophysiology, 50, No. 4, 309–321 (2018); doi: https://doi.org/10.1007/s11062-018-9753-z.

Article  Google Scholar 

A. V. Gorkovenko, T. Tomiak, W. Pilewska, et al., “Synergetic control during generation of a maximal isometric effort by the human arm,” Neurophysiology, 52, No. 1, 49–59 (2020); doi: https://doi.org/10.1007/s11062-020-09850-9.

Article  Google Scholar 

T. Tomiak, A. Gorkovenko, A. Tal’nov, et al., “The averaged EMGs recorded from the arm muscles during bimanual “rowing” movements,” Front. Physiol., 6, No. 349 (2015); doi: https://doi.org/10.3389/fphys.2015.00349.

T. Tomiak, T. Abramovych, A. Gorkovenko, et al., “The movement- and load-dependent differences in the EMG patterns of the human arm muscles during two-joint movements (a preliminary study),” Front. Physiol., 7, 218 (2016); doi: https://doi.org/10.3389/fphys.2016.00218.

Article  PubMed  PubMed Central  Google Scholar 

I. V. Vereshchaka, A. V. Gorkovenko, O. V. Lehedza, et al., “EMG patterns of the elbow- and shoulder-operating muscles in slow parafrontal upper limb movements under isotonic loading,” Neurophysiology, 50, No. 6, 466–474 (2018); doi: https://doi.org/10.1007/s11062-019-09779-8.

Article  Google Scholar 

A. I. Kostyukov, O. V. Lehedza, A. V. Gorkovenko, et al., “Hysteresis and synergy of the central commands to muscles participating in parafrontal upper limb movements,” Front. Physiol., 10, 1441 (2019); doi: https://doi.org/10.3389/fphys.2019.01441.

Article  PubMed  PubMed Central  Google Scholar 

A. V. Gorkovenko, O. V. Lehedza, T. I. Abramovych, et al., “Evaluation of the complexity of control of simple linear hand movements using principal component analysis,” Neurophysiology, 51, No. 2, 132–140 (2019); doi: https://doi.org/10.1007/s11062-019-09804-w.

Article  Google Scholar 

M. Dornowski, O. V. Lehedza, V. S. Mishchenko, and A. V. Gorkovenko, “Hysteresis in EMG activity of muscles of the human upper limb at rotations of the isometric effort vector,” Neurophysiology, 49, No. 4, 308–312 (2017); doi: https://doi.org/10.1007/s11062-017-9688-9.

Article  Google Scholar 

T. Tomiak, A. V. Gorkovenko, V. S. Mishchenko, et al., “Control of the power of strokes and muscle activities in cyclic rowing movements (a research using rowing simulators),’ Neurophysiology, 48, No. 4, 297–311 (2016); doi: https://doi.org/10.1007/s11062-016-9602-x.

Article  Google Scholar 

T. I. Abramovich, A. V. Gorkovenko, I. V. Vereshchaka, et al., “Peculiarities of activation of human muscles in realization of cyclic bimanual movements with different organization of the cycles,” Neurophysiology, 48, No. 1, 31–42 (2016); doi: https://doi.org/10.1007/s11062-016-9566-x.

Article  Google Scholar 

M. Dornowski, A. Gorkovenko, T. Tomiak, et al., “Cyclic movement execution and its influence on motor programmes,” Ann. Agric. Environ. Med., 26, No. 2, 361–368 (2019); doi: https://doi.org/10.26444/aaem/94881.

Article  PubMed  Google Scholar 

M. Zasada, A. V. Gorkovenko, S. S. Strafun, et al., “A new approach to the study of two-joint upper limb movements in humans: independent programming of the positioning and force,” Neurophysiology, 52, No. 5, 397–406 (2021); doi: https://doi.org/10.1007/s11062-021-09896-3.

Article  Google Scholar 

H.-M. Lee, “Force direction and arm position affect contribution of clavicular and sternal parts of pectoralis major muscle during muscle strength testing,” J. Hand Ther., 32, No. 1, 71–79 (2019); doi: https://doi.org/10.1016/j.jht.2017.08.007.

Article  PubMed  Google Scholar 

T. Lulic-Kuryllo, C. K. Thompson, N. Jiang, et al., “Neural control of the healthy pectoralis major from low-to-moderate isometric contractions,” J. Neurophysiol., 126, No. 1, 213–226 (2021); doi: https://doi.org/10.1152/jn.00046.2021.

Article  PubMed  Google Scholar 

S. Montalvo, L. D. Gruber, M. P. Gonzalez, et al., “Effects of augmented eccentric load bench press training on one repetition maximum performance and electromyographic activity in trained powerlifters,” J. Strength. Cond. Res., 35, No. 6, 1512–1519 (2021); doi: https://doi.org/10.1519/JSC.0000000000004030.

Article  PubMed  Google Scholar 

T. Lulic-Kuryllo, F. Negro, N. Jiang, and C. R. Dickerson, “Standard bipolar surface EMG estimations mischaracterize pectoralis major activity in commonly performed tasks,” J. Electromyogr. Kinesiol., 56, 102509 (2021); doi: https://doi.org/10.1016/j.jelekin.2020.102509.

Article  PubMed  Google Scholar 

A. Tsoukos, L. E. Brown, G. Terzis, et al., “Changes in EMG and movement velocity during a set to failure against different loads in the bench press exercise,” Scand. J. Med. Sci. Sports, (2021); doi: https://doi.org/10.1111/sms.14027.

Article  PubMed  Google Scholar 

M. Krzysztofik, J. Jarosz, P. Matykiewicz, et al., “A comparison of muscle activity of the dominant and nondominant side of the body during low versus high loaded bench press exercise performed to muscular failure,” J. Electromyogr. Kinesiol., 56, 102513 (2021); doi: https://doi.org/10.1016/j.jelekin.2020.102513.

Article  PubMed  Google Scholar 

D. Rodriguez-Ridao, J. A. Antequera-Vique, I. Martin-Fuentes, and J. M. Muyor, “Effect of five bench inclinations on the electromyographic activity of the pectoralis major, anterior deltoid, and triceps brachii during the bench press exercise,” Int. J. Environ. Res. Public Health., 17, No. 19, 7339 (2020); doi: https://doi.org/10.3390/ijerph17197339.

A. Golas, A. Maszczyk, P. Stastny, et al., ‘A new approach to EMG analysis of closed-circuit movements such as the flat bench press,” Sports (Basel), 6, No. 2, 27 (2018); doi: https://doi.org/10.3390/sports6020027.

Article  Google Scholar 

P. Stastny, A. Gołaś, D. Blazek, et al., “A systematic review of surface electromyography analyses of the bench press movement task,” PLoS One, 12, No. 2, e0171632 (2017); doi: https://doi.org/10.1371/journal.pone.0171632.

Article  CAS  Google Scholar 

S. P. Swinnen, “Intermanual coordination: from behavioural principles to neural-network interactions,” Nat. Rev. Neurosci., 3, No. 5, 348–359 (2002); doi: https://doi.org/10.1038/nrn807.

Article  CAS  PubMed  Google Scholar 

J. Boyles, S. Panzer, and C. H. Shea, “Increasingly complex bimanual multi-frequency coordination patterns are equally easy to perform with on-line relative velocity feedback,” Exp. Brain Res., 216, No. 4, 515–525 (2012); doi: https://doi.org/10.1007/s00221-011-2955-x.

Article  PubMed  Google Scholar 

E. G. James, “Nonstationarity of stable states in rhythmic bimanual coordination,” Motor Contr., 18, No. 2, 184–198 (2014); doi: https://doi.org/10.1123/mc.2013-0014.

Article  Google Scholar 

A. I. Kostyukov, “Muscle hysteresis and movement control: a theoretical study,” Neuroscience, 83, No. 1, 303–320 (1998); doi: https://doi.org/10.1016/s0306-4522(97)00379-5.

Article  CAS  PubMed  Google Scholar 

M. Lakie and K. S. Campbell, “Muscle thixotropy – where are we now?,” J. Appl. Physiol. (1985), 126, No. 6, 1790–1799 (2019); doi: https://doi.org/10.1152/japplphysiol.00788.2018.

Comments (0)

No login
gif