Wilms, C. M. W. Die Mischgeschwulste der Niere (1899).
Brok, J. et al. Unmet needs for relapsed or refractory Wilms tumour: mapping the molecular features, exploring organoids and designing early phase trials – a collaborative SIOP-RTSG, COG and ITCC session at the first SIOPE meeting. Eur. J. Cancer 144, 113–122 (2021).
Nelson, M. V., van den Heuvel-Eibrink, M. M., Graf, N. & Dome, J. S. New approaches to risk stratification for Wilms tumor. Curr. Opin. Pediatr. 33, 40–48 (2021).
Article CAS PubMed Google Scholar
van den Heuvel-Eibrink, M. M., Fernandez, C. V., Graf, N. & Geller, J. I. Progress by international collaboration for pediatric renal tumors by HARMONIzation and COllaboration: the HARMONICA initiative. Pediatr. Blood Cancer 70, e30082 (2023).
Beckwith, J. B., Kiviat, N. B. & Bonadio, J. F. Nephrogenic rests, nephroblastomatosis, and the pathogenesis of Wilms’ tumor. Pediatr. Pathol. 10, 1–36 (1990).
Article CAS PubMed Google Scholar
Vujanić, G. M. & Sandstedt, B. The pathology of Wilms’ tumour (nephroblastoma): the international society of paediatric oncology approach. J. Clin. Pathol. 63, 102–109 (2010).
Knudson, A. G. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. USA 68, 820–823 (1971).
Article PubMed PubMed Central Google Scholar
Knudson, A. G. & Strong, L. C. Mutation and cancer: a model for Wilms’ tumor of the kidney. J. Natl Cancer Inst. 48, 313–324 (1972).
Call, K. M. et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 60, 509–520 (1990).
Article CAS PubMed Google Scholar
Gessler, M. et al. Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature 343, 774–778 (1990).
Article CAS PubMed Google Scholar
Grundy, P. et al. Familial predisposition to Wilms’ tumour does not map to the short arm of chromosome 11. Nature 336, 374–376 (1988).
Article CAS PubMed Google Scholar
Koufos, A. et al. Familial Wiedemann-Beckwith syndrome and a second Wilms tumor locus both map to 11p15.5. Am. J. Hum. Genet. 44, 711–719 (1989).
CAS PubMed PubMed Central Google Scholar
Pal, N. et al. Preferential loss of maternal alleles in sporadic Wilms’ tumour. Oncogene 5, 1665–1668 (1990).
Peters, J. The role of genomic imprinting in biology and disease: an expanding view. Nat. Rev. Genet. 15, 517–530 (2014).
Article CAS PubMed Google Scholar
Breslow, N. E., Beckwith, J. B., Perlman, E. J. & Reeve, A. E. Age distributions, birth weights, nephrogenic rests, and heterogeneity in the pathogenesis of Wilms tumor. Pediatr. Blood Cancer 47, 260–267 (2006).
Article PubMed PubMed Central Google Scholar
Coorens, T. H. H. et al. Embryonal precursors of Wilms tumor. Science 366, 1247–1251 (2019).
Article CAS PubMed PubMed Central Google Scholar
Diets, I. J. et al. TRIM28 haploinsufficiency predisposes to Wilms tumor. Int. J. Cancer 145, 941–951 (2019).
Article CAS PubMed Google Scholar
Mahamdallie, S. et al. Identification of new Wilms tumour predisposition genes: an exome sequencing study. Lancet Child Adolesc. Health 3, 322–331 (2019).
Article PubMed PubMed Central Google Scholar
Scott, R. H. et al. Stratification of Wilms tumor by genetic and epigenetic analysis. Oncotarget 3, 327–335 (2012).
Article PubMed PubMed Central Google Scholar
Riccardi, V. M., Sujansky, E., Smith, A. C. & Francke, U. Chromosomal imbalance in the Aniridia–Wilms’ tumor association: 11p interstitial deletion. Pediatrics 61, 604–610 (1978).
Article CAS PubMed Google Scholar
Gessler, M. & Bruns, G. A. A physical map around the WAGR complex on the short arm of chromosome 11. Genomics 5, 43–55 (1989).
Article CAS PubMed Google Scholar
Gessler, M. et al. A deletion map of the WAGR region on chromosome 11. Am. J. Hum. Genet. 44, 486–495 (1989).
CAS PubMed PubMed Central Google Scholar
Rose, E. A. et al. Complete physical map of the WAGR region of 11p13 localizes a candidate Wilms’ tumor gene. Cell 60, 495–508 (1990).
Article CAS PubMed Google Scholar
Pritchard-Jones, K. et al. The candidate Wilms’ tumour gene is involved in genitourinary development. Nature 346, 194–197 (1990).
Article CAS PubMed Google Scholar
Schumacher, V. et al. Correlation of germ-line mutations and two-hit inactivation of the WT1 gene with Wilms tumors of stromal-predominant histology. Proc. Natl Acad. Sci. USA 94, 3972–3977 (1997).
Article CAS PubMed PubMed Central Google Scholar
Holmes, G. et al. Two N-terminal self-association domains are required for the dominant negative transcriptional activity of WT1 Denys–Drash mutant proteins. Biochem. Biophys. Res. Commun. 233, 723–728 (1997).
Article CAS PubMed Google Scholar
Maiti, S., Alam, R., Amos, C. I. & Huff, V. Frequent association of beta-catenin and WT1 mutations in Wilms tumors. Cancer Res. 60, 6288–6292 (2000).
Haruta, M. et al. Different incidences of epigenetic but not genetic abnormalities between Wilms tumors in Japanese and Caucasian children. Cancer Sci. 103, 1129–1135 (2012).
Article CAS PubMed PubMed Central Google Scholar
Ruteshouser, E. C., Robinson, S. M. & Huff, V. Wilms tumor genetics: mutations in WT1, WTX, and CTNNB1 account for only about one-third of tumors. Genes Chromosomes Cancer 47, 461–470 (2008).
Article CAS PubMed PubMed Central Google Scholar
Gadd, S. et al. A Children’s Oncology Group and TARGET initiative exploring the genetic landscape of Wilms tumor. Nat. Genet. 49, 1487–1494 (2017).
Article CAS PubMed PubMed Central Google Scholar
Varanasi, R. et al. Fine structure analysis of the WT1 gene in sporadic Wilms tumors. Proc. Natl Acad. Sci. USA 91, 3554–3558 (1994).
Article CAS PubMed PubMed Central Google Scholar
Hastie, N. D. Wilms’ tumour 1 (WT1) in development, homeostasis and disease. Development 144, 2862–2872 (2017).
Article CAS PubMed Google Scholar
van Heyningen, V. et al. Role for the Wilms tumor gene in genital development. Proc. Natl Acad. Sci. USA 87, 5383–5386 (1990).
Article PubMed PubMed Central Google Scholar
Kreidberg, J. A. et al. WT-1 is required for early kidney development. Cell 74, 679–691 (1993).
Article CAS PubMed Google Scholar
Bruening, W. et al. Germline intronic and exonic mutations in the Wilms’ tumour gene (WT1) affecting urogenital development. Nat. Genet. 1, 144–148 (1992).
Article CAS PubMed Google Scholar
Barbaux, S. et al. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat. Genet. 17, 467–470 (1997).
Article CAS PubMed Google Scholar
Klamt, B. et al. Frasier syndrome is caused by defective alternative splicing of WT1 leading to an altered ratio of WT1 +/−KTS splice isoforms. Hum. Mol. Genet. 7, 709–714 (1998).
Article CAS PubMed Google Scholar
Reeve, A. E., Sih, S. A., Raizis, A. M. & Feinberg, A. P. Loss of allelic heterozygosity at a second locus on chromosome 11 in sporadic Wilms’ tumor cells. Mol. Cell. Biol. 9, 1799–1803 (1989).
CAS PubMed PubMed Central Google Scholar
Ping, A. J. et al. Genetic linkage of Beckwith–Wiedemann syndrome to 11p15. Am. J. Hum. Genet. 44, 720–723 (1989).
CAS PubMed PubMed Central Google Scholar
Li, M., Squire, J. A. & Weksbe
Comments (0)