Hallmark discoveries in the biology of Wilms tumour

Wilms, C. M. W. Die Mischgeschwulste der Niere (1899).

Brok, J. et al. Unmet needs for relapsed or refractory Wilms tumour: mapping the molecular features, exploring organoids and designing early phase trials – a collaborative SIOP-RTSG, COG and ITCC session at the first SIOPE meeting. Eur. J. Cancer 144, 113–122 (2021).

Article  PubMed  Google Scholar 

Nelson, M. V., van den Heuvel-Eibrink, M. M., Graf, N. & Dome, J. S. New approaches to risk stratification for Wilms tumor. Curr. Opin. Pediatr. 33, 40–48 (2021).

Article  CAS  PubMed  Google Scholar 

van den Heuvel-Eibrink, M. M., Fernandez, C. V., Graf, N. & Geller, J. I. Progress by international collaboration for pediatric renal tumors by HARMONIzation and COllaboration: the HARMONICA initiative. Pediatr. Blood Cancer 70, e30082 (2023).

Article  PubMed  Google Scholar 

Beckwith, J. B., Kiviat, N. B. & Bonadio, J. F. Nephrogenic rests, nephroblastomatosis, and the pathogenesis of Wilms’ tumor. Pediatr. Pathol. 10, 1–36 (1990).

Article  CAS  PubMed  Google Scholar 

Vujanić, G. M. & Sandstedt, B. The pathology of Wilms’ tumour (nephroblastoma): the international society of paediatric oncology approach. J. Clin. Pathol. 63, 102–109 (2010).

Article  PubMed  Google Scholar 

Knudson, A. G. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. USA 68, 820–823 (1971).

Article  PubMed  PubMed Central  Google Scholar 

Knudson, A. G. & Strong, L. C. Mutation and cancer: a model for Wilms’ tumor of the kidney. J. Natl Cancer Inst. 48, 313–324 (1972).

PubMed  Google Scholar 

Call, K. M. et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 60, 509–520 (1990).

Article  CAS  PubMed  Google Scholar 

Gessler, M. et al. Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature 343, 774–778 (1990).

Article  CAS  PubMed  Google Scholar 

Grundy, P. et al. Familial predisposition to Wilms’ tumour does not map to the short arm of chromosome 11. Nature 336, 374–376 (1988).

Article  CAS  PubMed  Google Scholar 

Koufos, A. et al. Familial Wiedemann-Beckwith syndrome and a second Wilms tumor locus both map to 11p15.5. Am. J. Hum. Genet. 44, 711–719 (1989).

CAS  PubMed  PubMed Central  Google Scholar 

Pal, N. et al. Preferential loss of maternal alleles in sporadic Wilms’ tumour. Oncogene 5, 1665–1668 (1990).

CAS  PubMed  Google Scholar 

Peters, J. The role of genomic imprinting in biology and disease: an expanding view. Nat. Rev. Genet. 15, 517–530 (2014).

Article  CAS  PubMed  Google Scholar 

Breslow, N. E., Beckwith, J. B., Perlman, E. J. & Reeve, A. E. Age distributions, birth weights, nephrogenic rests, and heterogeneity in the pathogenesis of Wilms tumor. Pediatr. Blood Cancer 47, 260–267 (2006).

Article  PubMed  PubMed Central  Google Scholar 

Coorens, T. H. H. et al. Embryonal precursors of Wilms tumor. Science 366, 1247–1251 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diets, I. J. et al. TRIM28 haploinsufficiency predisposes to Wilms tumor. Int. J. Cancer 145, 941–951 (2019).

Article  CAS  PubMed  Google Scholar 

Mahamdallie, S. et al. Identification of new Wilms tumour predisposition genes: an exome sequencing study. Lancet Child Adolesc. Health 3, 322–331 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Scott, R. H. et al. Stratification of Wilms tumor by genetic and epigenetic analysis. Oncotarget 3, 327–335 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Riccardi, V. M., Sujansky, E., Smith, A. C. & Francke, U. Chromosomal imbalance in the Aniridia–Wilms’ tumor association: 11p interstitial deletion. Pediatrics 61, 604–610 (1978).

Article  CAS  PubMed  Google Scholar 

Gessler, M. & Bruns, G. A. A physical map around the WAGR complex on the short arm of chromosome 11. Genomics 5, 43–55 (1989).

Article  CAS  PubMed  Google Scholar 

Gessler, M. et al. A deletion map of the WAGR region on chromosome 11. Am. J. Hum. Genet. 44, 486–495 (1989).

CAS  PubMed  PubMed Central  Google Scholar 

Rose, E. A. et al. Complete physical map of the WAGR region of 11p13 localizes a candidate Wilms’ tumor gene. Cell 60, 495–508 (1990).

Article  CAS  PubMed  Google Scholar 

Pritchard-Jones, K. et al. The candidate Wilms’ tumour gene is involved in genitourinary development. Nature 346, 194–197 (1990).

Article  CAS  PubMed  Google Scholar 

Schumacher, V. et al. Correlation of germ-line mutations and two-hit inactivation of the WT1 gene with Wilms tumors of stromal-predominant histology. Proc. Natl Acad. Sci. USA 94, 3972–3977 (1997).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Holmes, G. et al. Two N-terminal self-association domains are required for the dominant negative transcriptional activity of WT1 Denys–Drash mutant proteins. Biochem. Biophys. Res. Commun. 233, 723–728 (1997).

Article  CAS  PubMed  Google Scholar 

Maiti, S., Alam, R., Amos, C. I. & Huff, V. Frequent association of beta-catenin and WT1 mutations in Wilms tumors. Cancer Res. 60, 6288–6292 (2000).

CAS  PubMed  Google Scholar 

Haruta, M. et al. Different incidences of epigenetic but not genetic abnormalities between Wilms tumors in Japanese and Caucasian children. Cancer Sci. 103, 1129–1135 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruteshouser, E. C., Robinson, S. M. & Huff, V. Wilms tumor genetics: mutations in WT1, WTX, and CTNNB1 account for only about one-third of tumors. Genes Chromosomes Cancer 47, 461–470 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gadd, S. et al. A Children’s Oncology Group and TARGET initiative exploring the genetic landscape of Wilms tumor. Nat. Genet. 49, 1487–1494 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Varanasi, R. et al. Fine structure analysis of the WT1 gene in sporadic Wilms tumors. Proc. Natl Acad. Sci. USA 91, 3554–3558 (1994).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hastie, N. D. Wilms’ tumour 1 (WT1) in development, homeostasis and disease. Development 144, 2862–2872 (2017).

Article  CAS  PubMed  Google Scholar 

van Heyningen, V. et al. Role for the Wilms tumor gene in genital development. Proc. Natl Acad. Sci. USA 87, 5383–5386 (1990).

Article  PubMed  PubMed Central  Google Scholar 

Kreidberg, J. A. et al. WT-1 is required for early kidney development. Cell 74, 679–691 (1993).

Article  CAS  PubMed  Google Scholar 

Bruening, W. et al. Germline intronic and exonic mutations in the Wilms’ tumour gene (WT1) affecting urogenital development. Nat. Genet. 1, 144–148 (1992).

Article  CAS  PubMed  Google Scholar 

Barbaux, S. et al. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat. Genet. 17, 467–470 (1997).

Article  CAS  PubMed  Google Scholar 

Klamt, B. et al. Frasier syndrome is caused by defective alternative splicing of WT1 leading to an altered ratio of WT1 +/−KTS splice isoforms. Hum. Mol. Genet. 7, 709–714 (1998).

Article  CAS  PubMed  Google Scholar 

Reeve, A. E., Sih, S. A., Raizis, A. M. & Feinberg, A. P. Loss of allelic heterozygosity at a second locus on chromosome 11 in sporadic Wilms’ tumor cells. Mol. Cell. Biol. 9, 1799–1803 (1989).

CAS  PubMed  PubMed Central  Google Scholar 

Ping, A. J. et al. Genetic linkage of Beckwith–Wiedemann syndrome to 11p15. Am. J. Hum. Genet. 44, 720–723 (1989).

CAS  PubMed  PubMed Central  Google Scholar 

Li, M., Squire, J. A. & Weksbe

Comments (0)

No login
gif