Sclerostin antibody improves alveolar bone quality in the Hyp mouse model of X-linked hypophosphatemia (XLH)

Carpenter, T. O., Imel, E. A., Holm, I. A., Jan de Beur, S. M. & Insogna, K. L. A clinician’s guide to X-linked hypophosphatemia. J. Bone Min. Res 26, 1381–1388 (2011).

Article  Google Scholar 

Liu, S., Tang, W., Zhou, J., Vierthaler, L. & Quarles, L. D. Distinct roles for intrinsic osteocyte abnormalities and systemic factors in regulation of FGF23 and bone mineralization in Hyp mice. Am. J. Physiol. Endocrinol. Metab. 293, E1636–E1644 (2007).

Article  PubMed  Google Scholar 

Zhang, H. et al. Dentoalveolar Defects in the Hyp Mouse Model of X-linked Hypophosphatemia. J. Dent. Res 99, 419–428 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Martin, A. et al. Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling. FASEB J. 25, 2551–2562 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Martin, A. et al. Overexpression of the DMP1 C-terminal fragment stimulates FGF23 and exacerbates the hypophosphatemic rickets phenotype in Hyp mice. Mol. Endocrinol. 26, 1883–1895 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Boukpessi, T. et al. Osteopontin and the dento-osseous pathobiology of X-linked hypophosphatemia. Bone 95, 151–161 (2017).

Article  PubMed  Google Scholar 

Barros, N. M. et al. Proteolytic processing of osteopontin by PHEX and accumulation of osteopontin fragments in Hyp mouse bone, the murine model of X-linked hypophosphatemia. J. Bone Min. Res 28, 688–699 (2013).

Article  Google Scholar 

Hoac, B. et al. Genetic Ablation of Osteopontin in Osteomalacic Hyp Mice Partially Rescues the Deficient Mineralization Without Correcting Hypophosphatemia. J. Bone Miner. Res. 35, 2032–2048 (2020).

Article  PubMed  Google Scholar 

Hanisch, M., Bohner, L., Sabandal, M. M. I., Kleinheinz, J. & Jung, S. Oral symptoms and oral health-related quality of life of individuals with x-linked hypophosphatemia. Head. Face Med. 15, 8 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Skrinar, A. et al. The Lifelong Impact of X-Linked Hypophosphatemia: Results From a Burden of Disease Survey. J. Endocr. Soc. 3, 1321–1334 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Biosse Duplan, M. et al. Phosphate and Vitamin D Prevent Periodontitis in X-Linked Hypophosphatemia. J. Dent. Res 96, 388–395 (2017).

Article  PubMed  Google Scholar 

Foster, B. L., Nociti, F. H. Jr & Somerman, M. J. The rachitic tooth. Endocr. Rev. 35, 1–34 (2014).

Article  PubMed  Google Scholar 

Fong, H. et al. Aberrant cementum phenotype associated with the hypophosphatemic hyp mouse. J. Periodontol. 80, 1348–1354 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Li, X. et al. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J. Bone Miner. Res. 23, 860–869 (2008).

Article  PubMed  Google Scholar 

Kuchler, U. et al. Dental and periodontal phenotype in sclerostin knockout mice. Int J. Oral. Sci. 6, 70–76 (2014).

Article  PubMed  PubMed Central  Google Scholar 

van Bezooijen, R. L. et al. Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J. Exp. Med. 199, 805–814 (2004).

Article  PubMed  PubMed Central  Google Scholar 

Lehnen, S. D., Götz, W., Baxmann, M. & Jäger, A. Immunohistochemical evidence for sclerostin during cementogenesis in mice. Ann. Anat. 194, 415–421 (2012).

Article  PubMed  Google Scholar 

Jager, A., Gotz, W., Lossdorfer, S. & Rath-Deschner, B. Localization of SOST/sclerostin in cementocytes in vivo and in mineralizing periodontal ligament cells in vitro. J. Periodontal. Res 45, 246–254 (2010).

Article  PubMed  Google Scholar 

Nam, Y. S. et al. Sclerostin in periodontal ligament: Homeostatic regulator in biophysical force-induced tooth movement. J. Clin. Periodontol. 49, 932–944 (2022).

Article  PubMed  Google Scholar 

Carpenter, K. A. et al. Sclerostin antibody improves phosphate metabolism hormones, bone formation rates, and bone mass in adult Hyp mice. Bone 154, 116201 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Carpenter, K. A. & Ross, R. D. Sclerostin Antibody Treatment Increases Bone Mass and Normalizes Circulating Phosphate Levels in Growing Hyp Mice. J. Bone Min. Res 35, 596–607 (2020).

Article  Google Scholar 

McKee, M. D. & Nanci, A. Osteopontin: an interfacial extracellular matrix protein in mineralized tissues. Connect Tissue Res 35, 197–205 (1996).

Article  PubMed  Google Scholar 

George, A., Guirado, E. & Chen, Y. in Biomineralization. (eds K Endo, T Kogure & H Nagasawa) 137–145 (Springer Singapore).

Lira dos Santos, E. J. et al. Effects of Active Vitamin D or FGF23 Antibody on Hyp Mice Dentoalveolar Tissues. J. Dent. Res. 100, 1482–1491 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Imel, E. A. et al. Burosumab versus conventional therapy in children with X-linked hypophosphataemia: a randomised, active-controlled, open-label, phase 3 trial. Lancet 393, 2416–2427 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Gadion, M. et al. Burosumab and Dental Abscesses in Children With X-Linked Hypophosphatemia. JBMR 6, e10672 (2022).

Google Scholar 

Ward, L. M. et al. Effect of Burosumab Compared With Conventional Therapy on Younger vs Older Children With X-linked Hypophosphatemia. J. Clin. Endocrinol. Metab. 107, e3241–e3253 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Eicher, E. M., Southard, J. L., Scriver, C. R. & Glorieux, F. H. Hypophosphatemia: mouse model for human familial hypophosphatemic (vitamin D-resistant) rickets. Proc. Natl Acad. Sci. USA 73, 4667–4671 (1976).

Article  PubMed  PubMed Central  Google Scholar 

Coyac, B. R. et al. Tissue-specific mineralization defects in the periodontium of the Hyp mouse model of X-linked hypophosphatemia. Bone 103, 334–346 (2017).

Article  PubMed  Google Scholar 

Chaussain-Miller, C. et al. Dentin structure in familial hypophosphatemic rickets: benefits of vitamin D and phosphate treatment. Oral. Dis. 13, 482–489 (2007).

Article  PubMed  Google Scholar 

Goodman, J. R., Gelbier, M. J., Bennett, J. H. & Winter, G. B. Dental problems associated with hypophosphataemic vitamin D resistant rickets. Int J. Paediatr. Dent. 8, 19–28 (1998).

Article  PubMed  Google Scholar 

Ye, L., Liu, R., White, N., Alon, U. S. & Cobb, C. M. Periodontal status of patients with hypophosphatemic rickets: a case series. J. Periodontol. 82, 1530–1535 (2011).

Article  PubMed  Google Scholar 

Virdi, A. S. et al. Sclerostin antibody treatment improves implant fixation in a model of severe osteoporosis. J. Bone Jt. Surg. Am. 97, 133–140 (2015).

Article  Google Scholar 

El-Tanani, M., Platt-Higgins, A., Rudland, P. S. & Campbell, F. C. Ets gene PEA3 cooperates with beta-catenin-Lef-1 and c-Jun in regulation of osteopontin transcription. J. Biol. Chem. 279, 20794–20806 (2004).

Article  PubMed  Google Scholar 

Friedman, M. S., Oyserman, S. M. & Hankenson, K. D. Wnt11 promotes osteoblast maturation and mineralization through R-spondin 2. J. Biol. Chem. 284, 14117–14125 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Tokavanich, N., Wein, M. N., English, J. D., Ono, N. & Ono, W. The Role of Wnt Signaling in Postnatal Tooth Root Development. Front. Dent. Med. 2, 769134 (2021)

Jarvinen, E., Shimomura-Kuroki, J., Balic, A., Jussila, M. & Thesleff, I. Mesenchymal Wnt/beta-catenin signaling limits tooth number. Development 145, (2018)

Kim, T. H. et al. Col1a1-cre mediated activation of β-catenin leads to aberrant dento-alveolar complex formation. Anat. Cell Biol. 45, 193–202 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Kim, T. H. et al. Constitutive stabilization of ß-catenin in the dental mesenchyme leads to excessive dentin and cementum formation. Biochem Biophys. Res Commun. 412, 549–555 (2011).

Article  PubMed  Google Scholar 

Ren, Y. et al. Sclerostin antibody (Scl-Ab) improves osteomalacia phenotype in dentin matrix protein 1(Dmp1) knockout mice with little impact on serum levels of phosphorus and FGF23. Matrix Biol. 52-54, 151–161 (2016).

Article  PubMed  Google Scholar 

Ryan, Z. C. et al. Sclerostin alters serum vitamin D metabolite and fibroblast growth factor 23 concentrations and the urinary excretion of calcium. Proc. Natl Acad. Sci. USA 110, 6199–6204 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Hawley, S. et al. Prevalence and Mortality of Individuals With X-Linked Hypophosphatemia: A United Kingdom Real-World Data Analysis. J. Clin. Endocrinol. Metab. 105, e871–e878 (2020).

Article  PubMed  Google Scholar 

Laurent, M. R. et al. Consensus Recommendations for the Diagnosis and Management of X-Linked Hypophosphatemia in Belgium. Front. Endocrinol. 12, 641543 (2021).

Rafaelsen, S., Johansson, S., Ræder, H. & Bjerknes, R. Hereditary hypophosphatemia in Norway: a retrospective population-based study of genotypes, phenotypes, and treatment complications. Eur. J. Endocrinol. 174, 125–136 (2016).

Article  PubMed  Google Scholar 

Larsson, A. et al. Dental health of patients with X-linked hypophosphatemia: A controlled study. Front Oral. Health

Comments (0)

No login
gif