Dolgin E. The myopia boom. Nature. 2015;519(7543):276–8.
Article CAS PubMed Google Scholar
Jonas JB, Ang M, Cho P, Guggenheim JA, He MG, Jong M, et al. IMI prevention of myopia and its progression. Invest Ophthalmol Vis Sci. 2021;62(5):6.
Article PubMed PubMed Central Google Scholar
Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036–42.
Smith EL 3rd. Optical treatment strategies to slow myopia progression: effects of the visual extent of the optical treatment zone. Exp Eye Res. 2013;114:77–88.
Article CAS PubMed PubMed Central Google Scholar
Walline JJ, Lindsley KB, Vedula SS, Cotter SA, Mutti DO, Ng SM, et al. Interventions to slow progression of myopia in children. Cochrane Database Syst Rev. 2020;1(1):CD004916.
Gifford KL, Gifford P, Hendicott PL, Schmid KL. Stability of peripheral refraction changes in orthokeratology for myopia. Cont Lens Anterior Eye. 2020;43(1):44–53.
Fedtke C, Ehrmann K, Bakaraju RC. Peripheral refraction and spherical aberration profiles with single vision, bifocal and multifocal soft contact lenses. J Optom. 2020;13(1):15–28.
Cho P, Cheung SW, Edwards M. The longitudinal orthokeratology research in children (LORIC) in Hong Kong: a pilot study on refractive changes and myopic control. Curr Eye Res. 2005;30(1):71–80.
Cho P, Cheung SW. Retardation of myopia in orthokeratology (ROMIO) study: a 2-year randomized clinical trial. Invest Ophthalmol Vis Sci. 2012;53(11):7077–85.
Santodomingo-Rubido J, Villa-Collar C, Gilmartin B, Gutiérrez-Ortega R. Myopia control with orthokeratology contact lenses in Spain: refractive and biometric changes. Invest Ophthalmol Vis Sci. 2012;53(8):5060–5.
Chen C, Cheung SW, Cho P. Myopia control using toric orthokeratology (TO-SEE study). Invest Ophthalmol Vis Sci. 2013;54(10):6510–7.
Pauné J, Morales H, Armengol J, Quevedo L, Faria-Ribeiro M, González-Méijome JM. Myopia control with a novel peripheral gradient soft lens and orthokeratology: a 2-year clinical trial. Biomed Res Int. 2015;2015:507572.
Article PubMed PubMed Central Google Scholar
Hiraoka T, Kakita T, Okamoto F, Takahashi H, Oshika T. Long-term effect of overnight orthokeratology on axial length elongation in childhood myopia: a 5-year follow-up study. Invest Ophthalmol Vis Sci. 2012;53(7):3913–9.
He MM, Du YR, Liu QY, Ren CD, Liu JL, Wang QY, et al. Effects of orthokeratology on the progression of low to moderate myopia in Chinese children. BMC Ophthalmol. 2016;16:126.
Article PubMed PubMed Central Google Scholar
Avetisov SE, Myagkov AV, Egorova AV, Poskrebysheva ZN, Zhabina OA. Results of a two-year clinical study of myopia control with bifocal defocus-inducing soft contact lenses. Vestn Oftalmol. 2021;137(3):5–12.
Article CAS PubMed Google Scholar
Lam CS, Tang WC, Tse DY, Tang YY, To CH. Defocus Incorporated Soft Contact (DISC) lens slows myopia progression in Hong Kong Chinese schoolchildren: a 2-year randomised clinical trial. Br J Ophthalmol. 2014;98(1):40–5.
Weng R, Lan WZ, Bakaraju R, Conrad F, Naduvilath T, Yang ZK, et al. Efficacy of contact lenses for myopia control: Insights from a randomised, contralateral study design. Ophthalmic Physiol Opt. 2022;42(6):1253–63.
Article PubMed PubMed Central Google Scholar
Cabanes-Martí E, García-Ayuso D. Myopia control with dual-focus soft contact lenses during the first year of measures to contain the COVID-19 pandemic. Ophthalmic Physiol Opt. 2022;42(6):1227–31.
Article PubMed PubMed Central Google Scholar
Walline JJ, Gaume Giannoni A, Sinnott LT, Chandler MA, Huang J, Mutti DO, et al. A randomized trial of soft multifocal contact lenses for myopia control: baseline data and methods. Optom Vis Sci. 2017;94(9):856–66.
Article PubMed PubMed Central Google Scholar
Raffa LH, Allinjawi K, Sharanjeet K, Akhir SM, Mutalib HA. Myopia control with soft multifocal contact lenses: 18-month follow-up. Saudi J Ophthalmol. 2022;35(4):325–31.
PubMed PubMed Central Google Scholar
Pauné J, Fonts S, Rodríguez L, Queirós A. The role of back optic zone diameter in myopia control with orthokeratology lenses. J Clin Med. 2021;10(2):336.
Article PubMed PubMed Central Google Scholar
Li N, Lin WP, Zhang KL, Li BQ, Su Q, Du B, et al. The effect of back optic zone diameter on relative corneal refractive power distribution and corneal higher-order aberrations in orthokeratology. Cont Lens Anterior Eye. 2023;46(1):101755.
Li Q, Fang FZ. Advances and challenges of soft contact lens design for myopia control. Appl Opt. 2019;58(7):1639–56.
Cheng X, Xu J, Brennan NA. Randomized trial of soft contact lenses with novel ring focus for controlling myopia progression. Ophthalmol Sci. 2022;3(1):100232.
Article PubMed PubMed Central Google Scholar
Chamberlain P, Bradley A, Arumugam B, Hammond D, McNally J, Logan NS, et al. Long-term effect of dual-focus contact lenses on myopia progression in children: a 6-year multicenter clinical trial. Optom Vis Sci. 2022;99(3):204–12.
Chamberlain P, Peixoto-de-Matos SC, Logan NS, Ngo C, Jones D, Young G. A 3-year randomized clinical trial of MiSight lenses for myopia control. Optom Vis Sci. 2019;96(8):556–67.
Turnbull PR, Munro OJ, Phillips JR. Contact lens methods for clinical myopia control. Optom Vis Sci. 2016;93(9):1120–6.
Lin WP, Li N, Lu KP, Li ZC, Zhuo XH, Wei RH. The relationship between baseline axial length and axial elongation in myopic children undergoing orthokeratology. Ophthalmic Physiol Opt. 2023;43(1):122–31.
Huang JH, Wen DZ, Wang QM, McAlinden C, Flitcroft I, Chen HS, et al. Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis. Ophthalmology. 2016;123(4):697–708.
Fang JX, Huang Z, Long Y, Zhu MM, Wu Q, Chen XJ, et al. Retardation of myopia by multifocal soft contact lens and orthokeratology: a 1-year randomized clinical trial. Eye Contact Lens. 2022;48(8):328–34.
Article PubMed PubMed Central Google Scholar
Charm J, Cho P. High myopia-partial reduction orthokeratology (HM-PRO): study design. Cont Lens Anterior Eye. 2013;36(4):164–70.
Lin WP, Li N, Gu TP, Tang CY, Liu GH, Du B, et al. The treatment zone size and its decentration influence axial elongation in children with orthokeratology treatment. BMC Ophthalmol. 2021;21(1):362.
Article PubMed PubMed Central Google Scholar
Kang P, Gifford P, Swarbrick H. Can manipulation of orthokeratology lens parameters modify peripheral refraction? Optom Vis Sci. 2013;90(11):1237–48.
Fu AC, Chen XL, Lv Y, Wang SL, Shang LN, Li XH, et al. Higher spherical equivalent refractive errors is associated with slower axial elongation wearing orthokeratology. Cont Lens Anterior Eye. 2016;39(1):62–6.
Hiraoka T. Myopia control with orthokeratology: a review. Eye Contact Lens. 2022;48(3):100–4.
Li SM, Kang MT, Wu SS, Meng B, Sun YY, Wei SF, et al. Studies using concentric ring bifocal and peripheral add multifocal contact lenses to slow myopia progression in school-aged children: a meta-analysis. Ophthalmic Physiol Opt. 2017;37(1):51–9.
Lu WW, Ning R, Diao K, Ding Y, Chen RR, Zhou L, et al. Comparison of two main orthokeratology lens designs in efficacy and safety for myopia control. Front Med (Lausanne). 2022;9:798314.
Tahhan N, Du Toit R, Papas E, Chung H, La Hood D, Holden AB. Comparison of reverse-geometry lens designs for overnight orthokeratology. Optom Vis Sci. 2003;80(12):796–804.
Article CAS PubMed Google Scholar
Yang XY, Bi H, Li LH, Li SM, Chen S, Zhang B, et al. The effect of relative corneal refractive power shift distribution on axial length growth in myopic children undergoing orthokeratology treatment. Curr Eye Res. 2020;46(5):657–65.
Comments (0)