Identification of potential molecular targets for the treatment of cluster 1 human pheochromocytoma and paraganglioma via comprehensive proteomic characterization

Nölting S, Bechmann N, Taieb D, Beuschlein F, Fassnacht M, Kroiss M, et al. Personalized Management of Pheochromocytoma and Paraganglioma. Endocr Rev. 2022;43(2):199–239.

Article  PubMed  Google Scholar 

Fishbein L. Pheochromocytoma and paraganglioma: Genetics, diagnosis, and treatment. Hematol Oncol Clin North Am. 2016;30(1):135–50.

Article  PubMed  Google Scholar 

Hamidi O, Raman R, Lazik N, Iniguez-Ariza N, McKenzie TJ, Lyden ML, et al. Clinical course of adrenal myelolipoma: a long-term longitudinal follow-up study. Clin Endocrinol (Oxf). 2020;93(1):11–8.

Article  PubMed  Google Scholar 

Kumar S, Lila AR, Memon SS, Sarathi V, Patil VA, Menon S, et al. Metastatic cluster 2-related pheochromocytoma/paraganglioma: a single-center experience and systematic review. Endocr Connect. 2021;10(11):1463–76.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wachtel H, Hutchens T, Baraban E, Schwartz LE, Montone K, Baloch Z, et al. Predicting Metastatic potential in pheochromocytoma and paraganglioma: a comparison of PASS and GAPP Scoring Systems. J Clin Endocrinol Metab. 2020;105(12):e4661–70.

Article  PubMed  PubMed Central  Google Scholar 

Zielinska DF, Gnad F, Wiśniewski JR, Mann M. Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell. 2010;141(5):897–907.

Article  CAS  PubMed  Google Scholar 

Tian Y, Zhou Y, Elliott S, Aebersold R, Zhang H. Solid-phase extraction of N-linked glycopeptides. Nat Protoc. 2007;2(2):334–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vit O, Man P, Kadek A, Hausner J, Sklenar J, Harant K, et al. Large-scale identification of membrane proteins based on analysis of trypsin-protected transmembrane segments. J Proteom. 2016;149:15–22.

Article  CAS  Google Scholar 

Vit O, Harant K, Klener P, Man P, Petrak J. A three-pronged pitchfork strategy enables an extensive description of the human membrane proteome and the identification of missing proteins. J Proteom. 2019;204:103411.

Article  CAS  Google Scholar 

Masuda T, Tomita M, Ishihama Y. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J Proteome Res. 2008;7(2):731–40.

Article  CAS  PubMed  Google Scholar 

Hebert AS, Richards AL, Bailey DJ, Ulbrich A, Coughlin EE, Westphall MS, et al. The one hour yeast proteome. Mol Cell Proteomics. 2014;13(1):339–47.

Article  CAS  PubMed  Google Scholar 

Hallgren J, Tsirigos KD, Pedersen MD, Almagro Armenteros JJ, Marcatili P, Nielsen H et al. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. bioRxiv 2022.04.08.487609.

Fagerberg L, Jonasson K, von Heijne G, Uhlén M, Berglund L. Prediction of the human membrane proteome. Proteomics. 2010;10(6):1141–9.

Article  CAS  PubMed  Google Scholar 

Nagaraj N, Wisniewski JR, Geiger T, Cox J, Kircher M, Kelso J, et al. Deep proteome and transcriptome mapping of a human cancer cell line. Mol Syst Biol. 2011;7:548.

Article  PubMed  PubMed Central  Google Scholar 

Vit O, Petrak J. Integral membrane proteins in proteomics. How to break open the black box? J Proteom. 2017;153:8–20.

Article  CAS  Google Scholar 

Blackler AR, Speers AE, Ladinsky MS, Wu CC. A shotgun proteomic method for the identification of membrane-embedded proteins and peptides. J Proteome Res. 2008;7(7):3028–34.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vit O, Patel M, Musil Z, Hartmann I, Frysak Z, Miettinen M, et al. Deep membrane proteome profiling reveals overexpression of prostate-specific membrane Antigen (PSMA) in high-risk human paraganglioma and pheochromocytoma, suggesting New Theranostic Opportunity. Molecules. 2021;26(21):6567.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Joshkon A, Heim X, Dubrou C, Bachelier R, Traboulsi W, Stalin J, et al. Role of CD146 (MCAM) in physiological and pathological angiogenesis-contribution of New antibodies for Therapy. Biomedicines. 2020;8(12):633.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Z, Xu Q, Zhang N, Du X, Xu G, Yan X. CD146, from a melanoma cell adhesion molecule to a signaling receptor. Signal Transduct Target Ther. 2020;5(1):148.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharma A, Joshkon A, Ladjimi A, Traboulsi W, Bachelier R, Robert S, et al. Soluble CD146 as a potential target for preventing Triple negative breast Cancer MDA-MB-231 cell growth and dissemination. Int J Mol Sci. 2022;23(2):974.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bardin N, Francès V, Combes V, Sampol J, Dignat-George F. CD146: biosynthesis and production of a soluble form in human cultured endothelial cells. FEBS Lett. 1998;421(1):12–4.

Article  CAS  PubMed  Google Scholar 

Stalin J, Nollet M, Garigue P, Fernandez S, Vivancos L, Essaadi A, et al. Targeting soluble CD146 with a neutralizing antibody inhibits vascularization, growth and survival of CD146-positive tumors. Oncogene. 2016;35(42):5489–500.

Article  CAS  PubMed  Google Scholar 

Stalin J, Traboulsi W, Vivancos-Stalin L, Nollet M, Joshkon A, Bachelier R, et al. Therapeutic targeting of soluble CD146/MCAM with the M2J-1 monoclonal antibody prevents metastasis development and procoagulant activity in CD146-positive invasive tumors. Int J Cancer. 2020;147(6):1666–79.

Article  CAS  PubMed  Google Scholar 

Obu S, Umeda K, Ueno H, Sonoda M, Tasaka K, Ogata H, et al. CD146 is a potential immunotarget for neuroblastoma. Cancer Sci. 2021;112(11):4617–26.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nollet M, Stalin J, Moyon A, Traboulsi W, Essaadi A, Robert S, et al. A novel anti-CD146 antibody specifically targets cancer cells by internalizing the molecule. Oncotarget. 2017;8(68):112283–96.

Article  PubMed  PubMed Central  Google Scholar 

Wang H, Zou L, Ma K, Yu J, Wu H, Wei M, et al. Cell-specific mechanisms of TMEM16A Ca2+-activated chloride channel in cancer. Mol Cancer. 2017;16(1):152.

Article  PubMed  PubMed Central  Google Scholar 

Li H, Yu Z, Wang H, Wang N, Sun X, Yang S, et al. Role of ANO1 in tumors and tumor immunity. J Cancer Res Clin Oncol. 2022;148(8):2045–68.

Article  CAS  PubMed  Google Scholar 

Duvvuri U, Shiwarski DJ, Xiao D, Bertrand C, Huang X, Edinger RS, et al. TMEM16A induces MAPK and contributes directly to tumorigenesis and cancer progression. Cancer Res. 2012;72(13):3270–81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Britschgi A, Bill A, Brinkhaus H, Rothwell C, Clay I, Duss S, et al. Calcium-activated chloride channel ANO1 promotes breast cancer progression by activating EGFR and CAMK signaling. Proc Natl Acad Sci U S A. 2013;110(11):E1026–34.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi S, Ma B, Sun F, Qu C, Li G, Shi D, et al. Zafirlukast inhibits the growth of lung adenocarcinoma via inhibiting TMEM16A channel activity. J Biol Chem. 2022;298(3):101731.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bastid J, Regairaz A, Bonnefoy N, Déjou C, Giustiniani J, Laheurte C, et al. Inhibition of CD39 enzymatic function at the surface of tumor cells alleviates their immunosuppressive activity. Cancer Immunol Res. 2015;3(3):254–65.

Article  CAS  PubMed  Google Scholar 

Häusler SF, Montalbán del Barrio I, Strohschein J, Chandran PA, Engel JB, Hönig A, et al. Ectonucleotidases CD39 and CD73 on OvCA cells are potent adenosine-generating enzymes responsible for adenosine receptor 2A-dependent suppression of T cell function and NK cell cytotoxicity. Cancer Immunol Immunother. 2011;60(10):1405–18.

Article  PubMed  Google Scholar 

Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science. 2011;334(6062):1573–7.

Article  CAS  PubMed  Google Scholar 

Li XY, Moesta AK, Xiao C, Nakamura K, Casey M, Zhang H, et al. Targeting CD39 in Cancer reveals an extracellular ATP- and inflammasome-driven tumor immunity. Cancer Discov. 2019;9(12):1754–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perrot I, Michaud HA, Giraudon-Paoli M, Augier S, Docquier A, Gros L, et al. Blocking antibodies targeting the CD39/CD73 immunosuppressive pathway unleash Immune responses in Combination Cancer Therapies. Cell Rep. 2019;27(8):2411–25e9.

Article  CAS  PubMed  Google Scholar 

Allard D, Allard B, Stagg J. On the mechanis

Comments (0)

No login
gif