Nölting S, Bechmann N, Taieb D, Beuschlein F, Fassnacht M, Kroiss M, et al. Personalized Management of Pheochromocytoma and Paraganglioma. Endocr Rev. 2022;43(2):199–239.
Fishbein L. Pheochromocytoma and paraganglioma: Genetics, diagnosis, and treatment. Hematol Oncol Clin North Am. 2016;30(1):135–50.
Hamidi O, Raman R, Lazik N, Iniguez-Ariza N, McKenzie TJ, Lyden ML, et al. Clinical course of adrenal myelolipoma: a long-term longitudinal follow-up study. Clin Endocrinol (Oxf). 2020;93(1):11–8.
Kumar S, Lila AR, Memon SS, Sarathi V, Patil VA, Menon S, et al. Metastatic cluster 2-related pheochromocytoma/paraganglioma: a single-center experience and systematic review. Endocr Connect. 2021;10(11):1463–76.
Article CAS PubMed PubMed Central Google Scholar
Wachtel H, Hutchens T, Baraban E, Schwartz LE, Montone K, Baloch Z, et al. Predicting Metastatic potential in pheochromocytoma and paraganglioma: a comparison of PASS and GAPP Scoring Systems. J Clin Endocrinol Metab. 2020;105(12):e4661–70.
Article PubMed PubMed Central Google Scholar
Zielinska DF, Gnad F, Wiśniewski JR, Mann M. Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell. 2010;141(5):897–907.
Article CAS PubMed Google Scholar
Tian Y, Zhou Y, Elliott S, Aebersold R, Zhang H. Solid-phase extraction of N-linked glycopeptides. Nat Protoc. 2007;2(2):334–9.
Article CAS PubMed PubMed Central Google Scholar
Vit O, Man P, Kadek A, Hausner J, Sklenar J, Harant K, et al. Large-scale identification of membrane proteins based on analysis of trypsin-protected transmembrane segments. J Proteom. 2016;149:15–22.
Vit O, Harant K, Klener P, Man P, Petrak J. A three-pronged pitchfork strategy enables an extensive description of the human membrane proteome and the identification of missing proteins. J Proteom. 2019;204:103411.
Masuda T, Tomita M, Ishihama Y. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J Proteome Res. 2008;7(2):731–40.
Article CAS PubMed Google Scholar
Hebert AS, Richards AL, Bailey DJ, Ulbrich A, Coughlin EE, Westphall MS, et al. The one hour yeast proteome. Mol Cell Proteomics. 2014;13(1):339–47.
Article CAS PubMed Google Scholar
Hallgren J, Tsirigos KD, Pedersen MD, Almagro Armenteros JJ, Marcatili P, Nielsen H et al. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. bioRxiv 2022.04.08.487609.
Fagerberg L, Jonasson K, von Heijne G, Uhlén M, Berglund L. Prediction of the human membrane proteome. Proteomics. 2010;10(6):1141–9.
Article CAS PubMed Google Scholar
Nagaraj N, Wisniewski JR, Geiger T, Cox J, Kircher M, Kelso J, et al. Deep proteome and transcriptome mapping of a human cancer cell line. Mol Syst Biol. 2011;7:548.
Article PubMed PubMed Central Google Scholar
Vit O, Petrak J. Integral membrane proteins in proteomics. How to break open the black box? J Proteom. 2017;153:8–20.
Blackler AR, Speers AE, Ladinsky MS, Wu CC. A shotgun proteomic method for the identification of membrane-embedded proteins and peptides. J Proteome Res. 2008;7(7):3028–34.
Article CAS PubMed PubMed Central Google Scholar
Vit O, Patel M, Musil Z, Hartmann I, Frysak Z, Miettinen M, et al. Deep membrane proteome profiling reveals overexpression of prostate-specific membrane Antigen (PSMA) in high-risk human paraganglioma and pheochromocytoma, suggesting New Theranostic Opportunity. Molecules. 2021;26(21):6567.
Article CAS PubMed PubMed Central Google Scholar
Joshkon A, Heim X, Dubrou C, Bachelier R, Traboulsi W, Stalin J, et al. Role of CD146 (MCAM) in physiological and pathological angiogenesis-contribution of New antibodies for Therapy. Biomedicines. 2020;8(12):633.
Article CAS PubMed PubMed Central Google Scholar
Wang Z, Xu Q, Zhang N, Du X, Xu G, Yan X. CD146, from a melanoma cell adhesion molecule to a signaling receptor. Signal Transduct Target Ther. 2020;5(1):148.
Article CAS PubMed PubMed Central Google Scholar
Sharma A, Joshkon A, Ladjimi A, Traboulsi W, Bachelier R, Robert S, et al. Soluble CD146 as a potential target for preventing Triple negative breast Cancer MDA-MB-231 cell growth and dissemination. Int J Mol Sci. 2022;23(2):974.
Article CAS PubMed PubMed Central Google Scholar
Bardin N, Francès V, Combes V, Sampol J, Dignat-George F. CD146: biosynthesis and production of a soluble form in human cultured endothelial cells. FEBS Lett. 1998;421(1):12–4.
Article CAS PubMed Google Scholar
Stalin J, Nollet M, Garigue P, Fernandez S, Vivancos L, Essaadi A, et al. Targeting soluble CD146 with a neutralizing antibody inhibits vascularization, growth and survival of CD146-positive tumors. Oncogene. 2016;35(42):5489–500.
Article CAS PubMed Google Scholar
Stalin J, Traboulsi W, Vivancos-Stalin L, Nollet M, Joshkon A, Bachelier R, et al. Therapeutic targeting of soluble CD146/MCAM with the M2J-1 monoclonal antibody prevents metastasis development and procoagulant activity in CD146-positive invasive tumors. Int J Cancer. 2020;147(6):1666–79.
Article CAS PubMed Google Scholar
Obu S, Umeda K, Ueno H, Sonoda M, Tasaka K, Ogata H, et al. CD146 is a potential immunotarget for neuroblastoma. Cancer Sci. 2021;112(11):4617–26.
Article CAS PubMed PubMed Central Google Scholar
Nollet M, Stalin J, Moyon A, Traboulsi W, Essaadi A, Robert S, et al. A novel anti-CD146 antibody specifically targets cancer cells by internalizing the molecule. Oncotarget. 2017;8(68):112283–96.
Article PubMed PubMed Central Google Scholar
Wang H, Zou L, Ma K, Yu J, Wu H, Wei M, et al. Cell-specific mechanisms of TMEM16A Ca2+-activated chloride channel in cancer. Mol Cancer. 2017;16(1):152.
Article PubMed PubMed Central Google Scholar
Li H, Yu Z, Wang H, Wang N, Sun X, Yang S, et al. Role of ANO1 in tumors and tumor immunity. J Cancer Res Clin Oncol. 2022;148(8):2045–68.
Article CAS PubMed Google Scholar
Duvvuri U, Shiwarski DJ, Xiao D, Bertrand C, Huang X, Edinger RS, et al. TMEM16A induces MAPK and contributes directly to tumorigenesis and cancer progression. Cancer Res. 2012;72(13):3270–81.
Article CAS PubMed PubMed Central Google Scholar
Britschgi A, Bill A, Brinkhaus H, Rothwell C, Clay I, Duss S, et al. Calcium-activated chloride channel ANO1 promotes breast cancer progression by activating EGFR and CAMK signaling. Proc Natl Acad Sci U S A. 2013;110(11):E1026–34.
Article CAS PubMed PubMed Central Google Scholar
Shi S, Ma B, Sun F, Qu C, Li G, Shi D, et al. Zafirlukast inhibits the growth of lung adenocarcinoma via inhibiting TMEM16A channel activity. J Biol Chem. 2022;298(3):101731.
Article CAS PubMed PubMed Central Google Scholar
Bastid J, Regairaz A, Bonnefoy N, Déjou C, Giustiniani J, Laheurte C, et al. Inhibition of CD39 enzymatic function at the surface of tumor cells alleviates their immunosuppressive activity. Cancer Immunol Res. 2015;3(3):254–65.
Article CAS PubMed Google Scholar
Häusler SF, Montalbán del Barrio I, Strohschein J, Chandran PA, Engel JB, Hönig A, et al. Ectonucleotidases CD39 and CD73 on OvCA cells are potent adenosine-generating enzymes responsible for adenosine receptor 2A-dependent suppression of T cell function and NK cell cytotoxicity. Cancer Immunol Immunother. 2011;60(10):1405–18.
Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science. 2011;334(6062):1573–7.
Article CAS PubMed Google Scholar
Li XY, Moesta AK, Xiao C, Nakamura K, Casey M, Zhang H, et al. Targeting CD39 in Cancer reveals an extracellular ATP- and inflammasome-driven tumor immunity. Cancer Discov. 2019;9(12):1754–73.
Article CAS PubMed PubMed Central Google Scholar
Perrot I, Michaud HA, Giraudon-Paoli M, Augier S, Docquier A, Gros L, et al. Blocking antibodies targeting the CD39/CD73 immunosuppressive pathway unleash Immune responses in Combination Cancer Therapies. Cell Rep. 2019;27(8):2411–25e9.
Article CAS PubMed Google Scholar
Allard D, Allard B, Stagg J. On the mechanis
Comments (0)