Baker, J. L., & Olds, J. L. (2007). Theta phase precession emerges from a hybrid computational model of a ca3 place cell. Cognitive neurodynamics, 1(3), 237–248. https://doi.org/10.1007/s11571-007-9018-9
Article PubMed PubMed Central Google Scholar
Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., & Smith, K. (2011). Cython: The best of both worlds. Computing in science and engineering, 13(2), 31–39. https://doi.org/10.1109/MCSE.2010.118
Bezaire, M. J., & Soltesz, I. (2013). Quantitative assessment of ca1 local circuits: knowledge base for interneuron-pyramidal cell connectivity. Hippocampus, 23(9), 751–785. https://doi.org/10.1002/hipo.22141
Article PubMed PubMed Central Google Scholar
Burgess, N., & O’Keefe, J. (2011). Models of place and grid cell firing and theta rhythmicity. Current Opinion in Neurobiology, 21(5), 734–744. https://doi.org/10.1016/j.conb.2011.07.002
Article CAS PubMed PubMed Central Google Scholar
Buzsáki, G., & Moser, E. I. (2013). Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nature Neuroscience, 16(2), 130–138. https://doi.org/10.1038/nn.3304
Article CAS PubMed PubMed Central Google Scholar
Castro, L., & Aguiar, P. (2012). Phase precession through acceleration of local theta rhythm: a biophysical model for the interaction between place cells and local inhibitory neurons. Journal of Computational Neuroscience, 33(1), 141–150. https://doi.org/10.1007/s10827-011-0378-0
Chance, F. S. (2012). Hippocampal phase precession from dual input components. The Journal of Neuroscience, 32(47), 16693–703. https://doi.org/10.1523/JNEUROSCI.2786-12.2012
Article CAS PubMed PubMed Central Google Scholar
Cutsuridis, V., & Hasselmo, M. (2012). Gabaergic contributions to gating, timing, and phase precession of hippocampal neuronal activity during theta oscillations. Hippocampus, 22(7), 1597–1621. https://doi.org/10.1002/hipo.21002
Article CAS PubMed Google Scholar
Dudok, B., Szoboszlay, M., Paul, A., Klein, P. M., Liao, Z., Hwaun, E., Szabo, G. G., Geiller, T., Vancura, B., Wang, B.-S., et al. (2021). Recruitment and inhibitory action of hippocampal axo-axonic cells during behavior. Neuron, 109(23), 3838–38508. https://doi.org/10.1016/j.neuron.2021.09.033
Article CAS PubMed PubMed Central Google Scholar
Eichenbaum, H. (2014). Time cells in the hippocampus: a new dimension for mapping memories. Nature Reviews. Neuroscience, 15(11), 732–744. https://doi.org/10.1038/nrn3827
Article CAS PubMed PubMed Central Google Scholar
Ferguson, K. A., & Campbell, S. A. (2009). A two compartment model of a ca1 pyramidal neuron. Canadian Applied Mathematics Quarterly, 17(2), 293–307.
Fernandez-Lamo, I., Gomez-Dominguez, D., Sanchez-Aguilera, A., Oliva, A., Morales, A.V., Valero, M., Cid, E., Berenyi, A., & Menendez dela Prida, L. (2019). Proximodistal organization of the ca2 hippocampal area. Cell Reports, 26(7), 1734–17466. https://doi.org/10.1016/j.celrep.2019.01.060
Fernández-Ruiz, A., Oliva, A., Nagy, G. A., Maurer, A. P., Berényi, A., & Buzsáki, G. (2017). Entorhinal-ca3 dual-input control of spike timing in the hippocampus by theta-gamma coupling. Neuron, 93(5), 1213–12265. https://doi.org/10.1016/j.neuron.2017.02.017
Article CAS PubMed PubMed Central Google Scholar
Geiller, T., Sadeh, S., Rolotti, S. V., Blockus, H., Vancura, B., Negrean, A., Murray, A. J., Rózsa, B., Polleux, F., Clopath, C., & Losonczy, A. (2022). Local circuit amplification of spatial selectivity in the hippocampus. Nature, 601(7891), 105–109. https://doi.org/10.1038/s41586-021-04169-9
Article CAS PubMed Google Scholar
Geiller, T., Vancura, B., Terada, S., Troullinou, E., Chavlis, S., Tsagkatakis, G., Tsakalides, P., ócsai, K., Poirazi, P., Rózsa, B. J., et al. (2020). Large-scale 3d two-photon imaging of molecularly identified ca1 interneuron dynamics in behaving mice. Neuron, 108(5), 968–9839. https://doi.org/10.1016/j.neuron.2020.09.013
Geisler, C., Robbe, D., Zugaro, M., Sirota, A., & Buzsáki, G. (2007). Hippocampal place cell assemblies are speed-controlled oscillators. Proceedings of the National Academy of Sciences of the United States of America, 104(19), 8149–8154. https://doi.org/10.1073/pnas.0610121104
Article CAS PubMed PubMed Central Google Scholar
Grienberger, C., Milstein, A. D., Bittner, K. C., Romani, S., & Magee, J. C. (2017). Inhibitory suppression of heterogeneously tuned excitation enhances spatial coding in ca1 place cells. Nature Neuroscience, 20(3), 417–426. https://doi.org/10.1038/nn.4486
Article CAS PubMed Google Scholar
Hafting, T., Fyhn, M., Bonnevie, T., Moser, M.-B., & Moser, E. I. (2008). Hippocampus-independent phase precession in entorhinal grid cells. Nature, 453(7199), 1248–1252. https://doi.org/10.1038/nature06957
Article CAS PubMed Google Scholar
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., et al. (2020). Array programming with numpy. Nature, 585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2
Article CAS PubMed PubMed Central Google Scholar
Harris, K. D., Henze, D. A., Hirase, H., Leinekugel, X., Dragoi, G., Czurkó, A., & Buzsáki, G. (2002). Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells. Nature, 417(6890), 738–741. https://doi.org/10.1038/nature00808
Article CAS PubMed Google Scholar
Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in science and engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55
Jeffery, K. J. (2011). Place cells, grid cells, attractors, and remapping. Neural plasticity, 2011, 182602. https://doi.org/10.1155/2011/182602
Article PubMed PubMed Central Google Scholar
Kamondi, A., Acsády, L., Wang, X. J., & Buzsáki, G. (1998). Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: activity-dependent phase-precession of action potentials. Hippocampus, 8(3), 244–261. https://doi.org/10.1002/(SICI)1098-1063(1998)8:3<244::AID-HIPO7>3.0.CO;2-J
Article CAS PubMed Google Scholar
Kempter, R., Leibold, C., Buzsáki, G., Diba, K., & Schmidt, R. (2012). Quantifying circular-linear associations: hippocampal phase precession. Journal of Neuroscience Methods, 207(1), 113–124. https://doi.org/10.1016/j.jneumeth.2012.03.007
Klausberger, T., Magill, P. J., Márton, L. F., Roberts, J. D. B., Cobden, P. M., Buzsáki, G., & Somogyi, P. (2003). Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature, 421(6925), 844–848. https://doi.org/10.1038/nature01374
Article CAS PubMed Google Scholar
Lam, S. K., Pitrou, A., & Seibert, S. (2015). Numba: A LLVM-based Python JIT compiler, pp. 1–6. ACM Press. https://doi.org/10.1145/2833157.2833162
Lasztóczi, B., & Klausberger, T. (2016). Hippocampal place cells couple to three different gamma oscillations during place field traversal. Neuron, 91(1), 34–40. https://doi.org/10.1016/j.neuron.2016.05.036
Article CAS PubMed Google Scholar
Lee, A. (2010). Circular data. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 477–486. https://doi.org/10.1002/wics.98
Losonczy, A., Zemelman, B. V., Vaziri, A., & Magee, J. C. (2010). Network mechanisms of theta related neuronal activity in hippocampal ca1 pyramidal neurons. Nature Neuroscience, 13(8), 967–972. https://doi.org/10.1038/nn.2597
Article CAS PubMed PubMed Central Google Scholar
Magee, J. C. (2001). Dendritic mechanisms of phase precession in hippocampal ca1 pyramidal neurons. Journal of Neurophysiology, 86(1), 528–532. https://doi.org/10.1152/jn.2001.86.1.528
Article CAS PubMed Google Scholar
Malvache, A., Reichinnek, S., Villette, V., Haimerl, C., & Cossart, R. (2016). Awake hippocampal reactivations project onto orthogonal neuronal assemblies. Science, 353(6305), 1280–1283. https://doi.org/10.1126/science.aaf3319
Article CAS PubMed Google Scholar
Mardia, J. (1999). Directional Statistics. John Wiley and Sons, Inc. https://doi.org/10.1002/9780470316979
Mardia, K. V. (1976). Linear-circular correlation coefficients and rhythmometry. Biometrika, 63(2), 403. https://doi.org/10.2307/2335637
Markiewicz, C. J., Gorgolewski, K. J., Feingold, F., Blair, R., Halchenko, Y. O., Miller, E., Hardcastle, N., Wexler, J., Esteban, O., Goncavles, M., et al. (2021). The openneuro resource for sharing of neuroscience data. eLife, 10. https://doi.org/10.7554/eLife.71774
Marshall, L., Henze, D. A., Hirase, H., Leinekugel, X., Dragoi, G., & Buzsáki, G. (2002). Hippocampal pyramidal cell-interneuron spike transmission is frequency dependent and responsible for place modulation of interneuron discharge. The Journal of Neuroscience, 22(2), 197.
Masurkar, A. V., Srinivas, K. V., Brann, D. H., Warren, R., Lowes, D. C., & Siegelbaum, S. A. (2017). Medial and lateral entorhinal cortex differentially excite deep versus superficial ca1 pyramidal neurons. Cell Reports, 18(1), 148–160. https://doi.org/10.1016/j.celrep.2016.12.012
Article CAS PubMed Google Scholar
Maurer, A. P., Cowen, S. L., Burke, S. N., Barnes, C. A., & McNaughton, B. L. (2006). Phase precession in hippocampal interneurons showing strong functional coupling to individual pyramidal cells. The Journal of Neuroscience, 26(52), 13485–13492. https://doi.org/10.1523/JNEUROSCI.2882-06.2006
Article CAS PubMed PubMed Central Google Scholar
Mehta, M. R., Lee, A. K., & Wilson, M. A. (2002). Role of experience and oscillations in transforming a rate code into a temporal code. Nature, 417(6890), 741–746. https://doi.org/10.1038/nature00807
Article CAS PubMed Google Scholar
Mizuseki, K., Diba, K., Pastalkova, E., Teeters, J., Sirota, A., & Buzsáki, G. (2014). Neurosharing: large-scale data sets (spike, lfp) recorded from the hippocampal-entorhinal system in behaving rats. [version 1; peer review: 4 approved]. F1000Research, 3, 98. https://doi.org/10.12688/f1000research.3895.1
Mizuseki, K., Royer, S., Diba, K., & Buzsáki, G. (2012). Activity dynamics and behavioral correlates of ca3 and ca1 hippocampal pyramidal neurons. Hippocampus, 22(8), 1659–1680. https://doi.org/10.1002/hipo.22002
Comments (0)