Alexander, A. S., Robinson, J. C., Dannenberg, H., Kinsky, N. R., Levy, S. J., Mau, W., Chapman, G. W., Sullivan, D. W., & Hasselmo, M. E. (2020). Neurophysiological coding of space and time in the hippocampus, entorhinal cortex, and retrosplenial cortex. Brain and Neuroscience Advances, 4, 2398212820972871.
Article PubMed PubMed Central Google Scholar
Aronov, D., Nevers, R., & Tank, D. W. (2017). Mapping of a non-spatial dimension by the hippocampal-entorhinal circuit. Nature, 543(7647), 719–722.
Article CAS PubMed PubMed Central Google Scholar
Aziz, A., Sreeharsha, P. S. S., Natesh, R., & Chakravarthy, V. S. (2022). An integrated deep learning-based model of spatial cells that combines self-motion with sensory information. Hippocampus, 32(10), 716–730.
Balcı, F., & Freestone, D. (2020). The peak interval procedure in rodents: A tool for studying the neurobiological basis of interval timing and its alterations in models of human disease. Bio-Protocol, 10(17), e3735–e3735.
Article PubMed PubMed Central Google Scholar
Banino, A., Barry, C., Uria, B., Blundell, C., Lillicrap, T., Mirowski, P., Pritzel, A., Chadwick, M. J., Degris, T., Modayil, J., Wayne, G., Soyer, H., Viola, F., Zhang, B., Goroshin, R., Rabinowitz, N., Pascanu, R., Beattie, C., ... Petersen, S. D. (2018). Vector-based navigation using grid-like representations in artificial agents. Nature, 557(7705), 429–433.
Banquet, J.-P., Gaussier, P., Cuperlier, N., Hok, V., Save, E., Poucet, B., Quoy, M., & Wiener, S. I. (2021). Time as the fourth dimension in the hippocampus. Progress in Neurobiology, 199, 101920.
Behrens, T. E. J., Muller, T. H., Whittington, J. C. R., Mark, S., Baram, A. B., Stachenfeld, K. L., & Kurth-Nelson, Z. (2018). What is a cognitive map? organizing knowledge for flexible behavior. Neuron, 100(2), 490–509.
Article CAS PubMed Google Scholar
Benna, M. K., & Fusi, S. (2021). Place cells may simply be memory cells: Memory compression leads to spatial tuning and history dependence. Proceedings of the National Academy of Sciences, 118(51), e2018422118.
Bjerknes, T. L., Dagslott, N. C., Moser, E. I., & Moser, M.-B. (2018). Path integration in place cells of developing rats. Proceedings of the National Academy of Sciences, 115(7), E1637–E1646.
Bright, I. M., Meister, M. L. R., Cruzado, N. A., Tiganj, Z., Buffalo, E. A., & Howard, M. W. (2020). A temporal record of the past with a spectrum of time constants in the monkey entorhinal cortex. Proceedings of the National Academy of Sciences, 117(33), 20274–20283.
Buhusi, C. V., & Meck, W. H. (2005). What makes us tick? functional and neural mechanisms of interval timing. Nature Reviews Neuroscience, 6(10), 755–765.
Article CAS PubMed Google Scholar
Buhusi, C. V., Aziz, D., Winslow, D., Carter, R. E., Swearingen, J. E., & Buhusi, M. C. (2009). Interval timing accuracy and scalar timing in c57bl/6 mice. Behavioral Neuroscience, 123(5), 1102.
Article PubMed PubMed Central Google Scholar
Burke, D. A., Rotstein, H. G., & Alvarez, V. A. (2017). Striatal local circuitry: A new framework for lateral inhibition. Neuron, 96(2), 267–284.
Article CAS PubMed PubMed Central Google Scholar
Buzsáki, G., & Tingley, D. (2018). Space and time: The hippocampus as a sequence generator. Trends in Cognitive Sciences, 22(10), 853–869.
Article PubMed PubMed Central Google Scholar
Cao, R., Bladon, J. H., Charczynski, S. J., Hasselmo, M. E., & Howard, M. W. (2022). Internally generated time in the rodent hippocampus is logarithmically compressed. Elife, 11, e75353.
Article CAS PubMed PubMed Central Google Scholar
Castegnaro, A., Ji, Z., Rudzka, K., Chan, D., & Burgess, N. (2023). Overestimation in angular path integration precedes alzheimer’s dementia. Current Biology, 33(21), 4650–4661.
Article CAS PubMed PubMed Central Google Scholar
Chen, G., King, J. A., Burgess, N., & O’Keefe, J. (2013). How vision and movement combine in the hippocampal place code. Proceedings of the National Academy of Sciences, 110(1), 378–383.
Chen, Y., Paiton, D., & Olshausen, B. (2018). The sparse manifold transform. Advances in Neural Information Processing Systems, 31.
Conklin, J., & Eliasmith, C. (2005). A controlled attractor network model of path integration in the rat. Journal of Computational Neuroscience, 18, 183–203.
Cruzado, N. A., Tiganj, Z., Brincat, S. L., Miller, E. K., & Howard, M. W. (2020). Conjunctive representation of what and when in monkey hippocampus and lateral prefrontal cortex during an associative memory task. Hippocampus, 30(12), 1332–1346.
Cueva, C. J., & Wei, X.-X. (2018). Emergence of grid-like representations by training recurrent neural networks to perform spatial localization. In International Conference on Learning Representations.
Dehaene, S. (2003). The neural basis of the weber-fechner law: A logarithmic mental number line. Trends in Cognitive Sciences, 7(4), 145–147.
Deshmukh, S. S., & Knierim, J. J. (2013). Influence of local objects on hippocampal representations: Landmark vectors and memory. Hippocampus, 23(4), 253–267.
Egorov, A. V., Hamam, B. N., Fransén, E., Hasselmo, M. E., & Alonso, A. A. (2002). Graded persistent activity in entorhinal cortex neurons. Nature, 420(6912), 173–178.
Article CAS PubMed Google Scholar
Eichenbaum, H. (2013). Memory on time. Trends in Cognitive Sciences, 17(2), 81–88.
Article PubMed PubMed Central Google Scholar
Eichenbaum, H. (2017a). On the integration of space, time, and memory. Neuron, 95(5), 1007–1018.
Article CAS PubMed PubMed Central Google Scholar
Eichenbaum, H. (2017b). Time (and space) in the hippocampus. Current Opinion in Behavioral Sciences, 17, 65–70.
Article PubMed PubMed Central Google Scholar
Ekstrom, A. D., & Ranganath, C. (2018). Space, time, and episodic memory: The hippocampus is all over the cognitive map. Hippocampus, 28(9), 680–687.
Erdem, U. M., Milford, M. J., & Hasselmo, M. E. (2015). A hierarchical model of goal directed navigation selects trajectories in a visual environment. Neurobiology of Learning and Memory, 117, 109–121.
Etienne, A. S. (1992). Navigation of a small mammal by dead reckoning and local cues. Current Directions in Psychological Science, 1(2), 48–52.
Etienne, A. S., Maurer, R., & Séguinot, V. (1996). Path integration in mammals and its interaction with visual landmarks. The Journal of Experimental Biology, 199(1), 201–209.
Article CAS PubMed Google Scholar
Falcon, W. A. (1990). Pytorch lightning. GitHub, 3.
Fetterman, J. G., & Killeen, P. R. (1990). A componential analysis of pacemaker-counter timing systems. Journal of Experimental Psychology: Human Perception and Performance, 16(4), 766.
Foldiak, P. (2003). Sparse coding in the primate cortex. The handbook of brain theory and neural networks.
Fransen, E., Alonso, A. A., & Hasselmo, M. E. (2002). Simulations of the role of the muscarinic-activated calcium-sensitive nonspecific cation currentincm in entorhinal neuronal activity during delayed matching tasks. Journal of Neuroscience, 22(3), 1081–1097.
Article CAS PubMed Google Scholar
Fransén, E., Tahvildari, B., Egorov, A. V., Hasselmo, M. E., & Alonso, A. A. (2006). Mechanism of graded persistent cellular activity of entorhinal cortex layer v neurons. Neuron, 49(5), 735–746.
Gibbon, J. (1977). Scalar expectancy theory and weber’s law in animal timing. Psychological Review, 84(3), 279.
Gothard, K. M., Hoffman, K. L., Battaglia, F. P., & McNaughton, B. L. (2001). Dentate gyrus and ca1 ensemble activity during spatial reference frame shifts in the presence and absence of visual input. Journal o
Comments (0)