Self-supervised learning of scale-invariant neural representations of space and time

Alexander, A. S., Robinson, J. C., Dannenberg, H., Kinsky, N. R., Levy, S. J., Mau, W., Chapman, G. W., Sullivan, D. W., & Hasselmo, M. E. (2020). Neurophysiological coding of space and time in the hippocampus, entorhinal cortex, and retrosplenial cortex. Brain and Neuroscience Advances, 4, 2398212820972871.

Article  PubMed  PubMed Central  Google Scholar 

Aronov, D., Nevers, R., & Tank, D. W. (2017). Mapping of a non-spatial dimension by the hippocampal-entorhinal circuit. Nature, 543(7647), 719–722.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aziz, A., Sreeharsha, P. S. S., Natesh, R., & Chakravarthy, V. S. (2022). An integrated deep learning-based model of spatial cells that combines self-motion with sensory information. Hippocampus, 32(10), 716–730.

Article  PubMed  Google Scholar 

Balcı, F., & Freestone, D. (2020). The peak interval procedure in rodents: A tool for studying the neurobiological basis of interval timing and its alterations in models of human disease. Bio-Protocol, 10(17), e3735–e3735.

Article  PubMed  PubMed Central  Google Scholar 

Banino, A., Barry, C., Uria, B., Blundell, C., Lillicrap, T., Mirowski, P., Pritzel, A., Chadwick, M. J., Degris, T., Modayil, J., Wayne, G., Soyer, H., Viola, F., Zhang, B., Goroshin, R., Rabinowitz, N., Pascanu, R., Beattie, C., ... Petersen, S. D. (2018). Vector-based navigation using grid-like representations in artificial agents. Nature, 557(7705), 429–433.

Banquet, J.-P., Gaussier, P., Cuperlier, N., Hok, V., Save, E., Poucet, B., Quoy, M., & Wiener, S. I. (2021). Time as the fourth dimension in the hippocampus. Progress in Neurobiology, 199, 101920.

Article  PubMed  Google Scholar 

Behrens, T. E. J., Muller, T. H., Whittington, J. C. R., Mark, S., Baram, A. B., Stachenfeld, K. L., & Kurth-Nelson, Z. (2018). What is a cognitive map? organizing knowledge for flexible behavior. Neuron, 100(2), 490–509.

Article  CAS  PubMed  Google Scholar 

Benna, M. K., & Fusi, S. (2021). Place cells may simply be memory cells: Memory compression leads to spatial tuning and history dependence. Proceedings of the National Academy of Sciences, 118(51), e2018422118.

Article  CAS  Google Scholar 

Bjerknes, T. L., Dagslott, N. C., Moser, E. I., & Moser, M.-B. (2018). Path integration in place cells of developing rats. Proceedings of the National Academy of Sciences, 115(7), E1637–E1646.

Article  CAS  Google Scholar 

Bright, I. M., Meister, M. L. R., Cruzado, N. A., Tiganj, Z., Buffalo, E. A., & Howard, M. W. (2020). A temporal record of the past with a spectrum of time constants in the monkey entorhinal cortex. Proceedings of the National Academy of Sciences, 117(33), 20274–20283.

Article  CAS  Google Scholar 

Buhusi, C. V., & Meck, W. H. (2005). What makes us tick? functional and neural mechanisms of interval timing. Nature Reviews Neuroscience, 6(10), 755–765.

Article  CAS  PubMed  Google Scholar 

Buhusi, C. V., Aziz, D., Winslow, D., Carter, R. E., Swearingen, J. E., & Buhusi, M. C. (2009). Interval timing accuracy and scalar timing in c57bl/6 mice. Behavioral Neuroscience, 123(5), 1102.

Article  PubMed  PubMed Central  Google Scholar 

Burke, D. A., Rotstein, H. G., & Alvarez, V. A. (2017). Striatal local circuitry: A new framework for lateral inhibition. Neuron, 96(2), 267–284.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buzsáki, G., & Tingley, D. (2018). Space and time: The hippocampus as a sequence generator. Trends in Cognitive Sciences, 22(10), 853–869.

Article  PubMed  PubMed Central  Google Scholar 

Cao, R., Bladon, J. H., Charczynski, S. J., Hasselmo, M. E., & Howard, M. W. (2022). Internally generated time in the rodent hippocampus is logarithmically compressed. Elife, 11, e75353.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Castegnaro, A., Ji, Z., Rudzka, K., Chan, D., & Burgess, N. (2023). Overestimation in angular path integration precedes alzheimer’s dementia. Current Biology, 33(21), 4650–4661.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, G., King, J. A., Burgess, N., & O’Keefe, J. (2013). How vision and movement combine in the hippocampal place code. Proceedings of the National Academy of Sciences, 110(1), 378–383.

Article  CAS  Google Scholar 

Chen, Y., Paiton, D., & Olshausen, B. (2018). The sparse manifold transform. Advances in Neural Information Processing Systems, 31.

Conklin, J., & Eliasmith, C. (2005). A controlled attractor network model of path integration in the rat. Journal of Computational Neuroscience, 18, 183–203.

Article  PubMed  Google Scholar 

Cruzado, N. A., Tiganj, Z., Brincat, S. L., Miller, E. K., & Howard, M. W. (2020). Conjunctive representation of what and when in monkey hippocampus and lateral prefrontal cortex during an associative memory task. Hippocampus, 30(12), 1332–1346.

Article  PubMed  Google Scholar 

Cueva, C. J., & Wei, X.-X. (2018). Emergence of grid-like representations by training recurrent neural networks to perform spatial localization. In International Conference on Learning Representations.

Dehaene, S. (2003). The neural basis of the weber-fechner law: A logarithmic mental number line. Trends in Cognitive Sciences, 7(4), 145–147.

Article  PubMed  Google Scholar 

Deshmukh, S. S., & Knierim, J. J. (2013). Influence of local objects on hippocampal representations: Landmark vectors and memory. Hippocampus, 23(4), 253–267.

Article  PubMed  Google Scholar 

Egorov, A. V., Hamam, B. N., Fransén, E., Hasselmo, M. E., & Alonso, A. A. (2002). Graded persistent activity in entorhinal cortex neurons. Nature, 420(6912), 173–178.

Article  CAS  PubMed  Google Scholar 

Eichenbaum, H. (2013). Memory on time. Trends in Cognitive Sciences, 17(2), 81–88.

Article  PubMed  PubMed Central  Google Scholar 

Eichenbaum, H. (2017a). On the integration of space, time, and memory. Neuron, 95(5), 1007–1018.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eichenbaum, H. (2017b). Time (and space) in the hippocampus. Current Opinion in Behavioral Sciences, 17, 65–70.

Article  PubMed  PubMed Central  Google Scholar 

Ekstrom, A. D., & Ranganath, C. (2018). Space, time, and episodic memory: The hippocampus is all over the cognitive map. Hippocampus, 28(9), 680–687.

Article  PubMed  Google Scholar 

Erdem, U. M., Milford, M. J., & Hasselmo, M. E. (2015). A hierarchical model of goal directed navigation selects trajectories in a visual environment. Neurobiology of Learning and Memory, 117, 109–121.

Article  PubMed  Google Scholar 

Etienne, A. S. (1992). Navigation of a small mammal by dead reckoning and local cues. Current Directions in Psychological Science, 1(2), 48–52.

Article  Google Scholar 

Etienne, A. S., Maurer, R., & Séguinot, V. (1996). Path integration in mammals and its interaction with visual landmarks. The Journal of Experimental Biology, 199(1), 201–209.

Article  CAS  PubMed  Google Scholar 

Falcon, W. A. (1990). Pytorch lightning. GitHub, 3.

Fetterman, J. G., & Killeen, P. R. (1990). A componential analysis of pacemaker-counter timing systems. Journal of Experimental Psychology: Human Perception and Performance, 16(4), 766.

CAS  PubMed  Google Scholar 

Foldiak, P. (2003). Sparse coding in the primate cortex. The handbook of brain theory and neural networks.

Fransen, E., Alonso, A. A., & Hasselmo, M. E. (2002). Simulations of the role of the muscarinic-activated calcium-sensitive nonspecific cation currentincm in entorhinal neuronal activity during delayed matching tasks. Journal of Neuroscience, 22(3), 1081–1097.

Article  CAS  PubMed  Google Scholar 

Fransén, E., Tahvildari, B., Egorov, A. V., Hasselmo, M. E., & Alonso, A. A. (2006). Mechanism of graded persistent cellular activity of entorhinal cortex layer v neurons. Neuron, 49(5), 735–746.

Article  PubMed  Google Scholar 

Gibbon, J. (1977). Scalar expectancy theory and weber’s law in animal timing. Psychological Review, 84(3), 279.

Article  Google Scholar 

Gothard, K. M., Hoffman, K. L., Battaglia, F. P., & McNaughton, B. L. (2001). Dentate gyrus and ca1 ensemble activity during spatial reference frame shifts in the presence and absence of visual input. Journal o

Comments (0)

No login
gif