Fenta TG, Assefa T, Alemayehu B. Quality of anticoagulation management with warfarin among outpatients in a tertiary hospital in Addis Ababa, Ethiopia: a retrospective cross-sectional study. BMC Health Serv Res. 2017;17:1–7.
Li B, Liu R, Wang C, Ren C, Zhang S, Zhang F, et al. Impact of genetic and clinical factors on warfarin therapy in patients early after heart valve replacement surgery. Eur J Clin Pharmacol. 2019;75:1685–93.
Article CAS PubMed Google Scholar
Hirsh J, Dalen JE, Anderson DR, Poller L, Bussey H, Ansell J, et al. Oral anticoagulants: mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest. 2001;119:8S–21S.
Article CAS PubMed Google Scholar
Takahashi H, Echizen H. Pharmacogenetics of warfarin elimination and its clinical implications. Clin Pharmacokinet. 2001;40:587–603.
Article CAS PubMed Google Scholar
D’Andrea G, D’Ambrosio RL, Di Perna P, Chetta M, Santacroce R, Brancaccio V, et al. A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood. 2005;105:645–9.
Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod HL, et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med. 2005;352:2285–93.
Article CAS PubMed Google Scholar
Joffe HV, Xu R, Johnson FB, Longtine J, Kucher N, Goldhaber SZ. Warfarin dosing and cytochrome P450 2C9 polymorphisms. Thromb Haemost. 2004;91:1123–8.
Article CAS PubMed Google Scholar
Liang R, Wang C, Zhao H, Huang J, Hu D, Sun Y. Influence of CYP4F2 genotype on warfarin dose requirement–a systematic review and meta-analysis. Thromb Res. 2012;130:38–44.
Article CAS PubMed Google Scholar
Singh O, Sandanaraj E, Subramanian K, Lee LH, Chowbay B. Influence of CYP4F2 rs2108622 (V433M) on warfarin dose requirement in asian patients. Drug Metab Pharmacokinet. 2011;26:130–6.
Article CAS PubMed Google Scholar
Borgiani P, Ciccacci C, Forte V, Sirianni E, Novelli L, Bramanti P, et al. CYP4F2 genetic variant (rs2108622) significantly contributes to warfarin dosing variability in the italian population. Pharmacogenomics. 2009;10:261–6.
Article CAS PubMed Google Scholar
Kikuta Y, Kusunose E, Kusunose M. Characterization of Human Liver Leukotriene B4 ω-Hydroxylase P 450 (CYP 4 F2). J Biochem. 2000;127:1047–52.
Article CAS PubMed Google Scholar
Hirani V, Yarovoy A, Kozeska A, Magnusson RP, Lasker JM. Expression of CYP4F2 in human liver and kidney: assessment using targeted peptide antibodies. Arch Biochem Biophys. 2008;478:59–68.
Article CAS PubMed PubMed Central Google Scholar
Sontag TJ, Parker RS. Cytochrome P450 ω-hydroxylase pathway of tocopherol catabolism: novel mechanism of regulation of vitamin E status. J Biol Chem. 2002;277:25290–6.
Article CAS PubMed Google Scholar
McDonald MG, Rieder MJ, Nakano M, Hsia CK, Rettie AE. CYP4F2 is a vitamin K1 oxidase: an explanation for altered warfarin dose in carriers of the V433M variant. Mol Pharmacol. 2009;75:1337–46.
Article CAS PubMed PubMed Central Google Scholar
Edson KZ, Prasad B, Unadkat JD, Suhara Y, Okano T, Guengerich FP, et al. Cytochrome P450-dependent catabolism of vitamin K: ω-hydroxylation catalyzed by human CYP4F2 and CYP4F11. Biochemistry. 2013;52:8276–85.
Article CAS PubMed Google Scholar
Zhang X, Hardwick JP. Regulation of CYP4F2 leukotriene B4 ω-hydroxylase by retinoic acids in HepG2 cells. Biochem Biophys Res Commun. 2000;279:864–71.
Article CAS PubMed Google Scholar
Wang MZ, Wu JQ, Bridges AS, Zeldin DC, Kornbluth S, Tidwell RR, et al. Human enteric microsomal CYP4F enzymes O-demethylate the antiparasitic prodrug pafuramidine. Drug Metab Dispos. 2007;35:2067–75.
Article CAS PubMed Google Scholar
Wang Y, Li Y, Lu J, Qi H, Cheng I, Zhang H. Involvement of CYP4F2 in the metabolism of a novel monophosphate Ester Prodrug of gemcitabine and its interaction potential in vitro. Molecules. 2018;23:1195.
Article PubMed PubMed Central Google Scholar
Johnson AL, Edson KZ, Totah RA, Rettie AE. Cytochrome P450 ω-hydroxylases in inflammation and cancer. Adv Pharmacol. 2015;74:223–62.
Article CAS PubMed PubMed Central Google Scholar
Alvarellos ML, Sangkuhl K, Daneshjou R, Whirl-Carrillo M, Altman RB, Klein TE. PharmGKB summary: very important pharmacogene information for CYP4F2. Pharmacogenet Genomics. 2015;25:41.
Article CAS PubMed PubMed Central Google Scholar
Stec DE, Roman RJ, Flasch A, Rieder MJ. Functional polymorphism in human CYP4F2 decreases 20-HETE production. Physiol Genomics. 2007.
Zhang JE, Klein K, Jorgensen AL, Francis B, Alfirevic A, Bourgeois S, et al. Effect of genetic variability in the CYP4F2, CYP4F11, and CYP4F12 genes on liver mRNA levels and warfarin response. Front Pharmacol. 2017;8:323.
Article CAS PubMed PubMed Central Google Scholar
Zhang M, Huang C, Wang Z, Lv H, Li X. In silico analysis of non-synonymous single nucleotide polymorphisms (nsSNPs) in the human GJA3 gene associated with congenital cataract. BMC Mol cell Biol. 2020;21:1–13.
Robin S, Hassine K, Ben, Muthukumaran J, Jurkovic Mlakar S, Krajinovic M, Nava T, et al. A potential implication of UDP-glucuronosyltransferase 2B10 in the detoxification of drugs used in pediatric hematopoietic stem cell transplantation setting: an in silico investigation. BMC Mol cell Biol. 2022;23:1–29.
Nelson-Sathi S, Umasankar PK, Sreekumar E, Nair RR, Joseph I, Nori SRC, et al. Mutational landscape and in silico structure models of SARS-CoV-2 spike receptor binding domain reveal key molecular determinants for virus-host interaction. BMC Mol Cell Biol. 2022;23:1–12.
Mirzadeh A, Kobakhidze G, Vuillemot R, Jonic S, Rouiller I. In silico prediction, Characterization, Docking studies and Molecular dynamics simulation of human p97 in complex with p37 cofactor. 2022.
Surendran A, Forbes Dewey C, Low BC, Tucker-Kellogg L. A computational model of mutual antagonism in the mechano-signaling network of RhoA and nitric oxide. BMC Mol cell Biol. 2021;22:1–12.
UniProt. The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49:D480–9.
Barbarino JM, Whirl-Carrillo M, Altman RB, Klein TE. PharmGKB: a worldwide resource for pharmacogenomic information. Wiley Interdiscip Rev Syst Biol Med. 2018;10:e1417.
Article PubMed PubMed Central Google Scholar
Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER suite: protein structure and function prediction. Nat Methods. 2015;12:7–8.
Article CAS PubMed PubMed Central Google Scholar
Laskowski RA, MacArthur MW, Thornton JM. PROCHECK: validation of protein-structure coordinates. 2006.
Colovos C, Yeates TO. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci. 1993;2:1511–9.
Article CAS PubMed PubMed Central Google Scholar
Lüthy R, Bowie JU, Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature. 1992;356:83–5.
Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35 suppl2:W407–10.
Capriotti E, Fariselli P, Casadio R, I-Mu[1] E, Capriotti P, Fariselli R, Casadio. I-Mutant2. 0: predicting stability changes upon mutation from the protein sequence or structure, Nucleic Acids Res. 33 (2005) W306–W310.tant2. 0: predicting stability changes upon mutation from the protein s. Nucleic Acids Res. 2005;33 suppl_2:W306–10.
Cheng J, Randall A, Baldi P. Prediction of protein stability changes for single-site mutations using support vector machines. Proteins Struct Funct Bioinforma. 2006;62:1125–32.
Pires DEV, Ascher DB, Blundell TL. DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res. 2014;42:W314–9.
Article CAS PubMed PubMed Central Google Scholar
Fraczkiewicz R, Braun W. Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules. J Comput Chem. 1998;19:319–33.
Venselaar H, Te Beek TAH, Kuipers RKP, Hekkelman ML, Vriend G. Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics. 2010;11:1–10.
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–12.
Article CAS PubMed Google Scholar
Yariv B, Yariv E, Kessel A, Masrati G, Chorin A, Ben, Martz E et al. Using evolutionary data to make sense of macromolecules with a ‘face-lifted’ConSurf. Protein Sci. 2023;:e4582.
Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.
Comments (0)