Syndesmophyte Growth in Ankylosing Spondylitis: from Laboratory to Bedside

Jang JH, Ward MM, Rucker AN, Reveille JD, Davis JC Jr, Weisman MH, et al. Ankylosing spondylitis: patterns of radiographic involvement–a re-examination of accepted principles in a cohort of 769 patients. Radiology. 2011;258(1):192–8. https://doi.org/10.1148/radiol.10100426.

Article  PubMed  PubMed Central  Google Scholar 

Tan S, Yao L, Ward MM. Thoracic syndesmophytes commonly occur in the absence of lumbar syndesmophytes in ankylosing spondylitis: a computed tomography study. J Rheumatol. 2017;44(12):1828–32. https://doi.org/10.3899/jrheum.170340.

Article  CAS  PubMed  Google Scholar 

Wanders AJ, Landewé RB, Spoorenberg A, Dougados M, van der Linden S, Mielants H, et al. What is the most appropriate radiologic scoring method for ankylosing spondylitis? A comparison of the available methods based on the Outcome Measures in Rheumatology Clinical Trials filter. Arthritis Rheum. 2004;50(8):2622–32. https://doi.org/10.1002/art.20446.

Article  PubMed  Google Scholar 

Poddubnyy D, Sieper J. Radiographic progression in ankylosing spondylitis/axial spondyloarthritis: how fast and how clinically meaningful? Curr Opin Rheumatol. 2012;24(4):363–9. https://doi.org/10.1097/BOR.0b013e328352b7bd.

Article  PubMed  Google Scholar 

Wang R, Bathon JM, Ward MM. Nonsteroidal antiinflammatory drugs as potential disease-modifying medications in axial spondyloarthritis. Arthritis Rheumatol. 2020;72(4):518–28. https://doi.org/10.1002/art.41164.

Article  PubMed  PubMed Central  Google Scholar 

Cortes A, Maksymowych WP, Wordsworth BP, Inman RD, Danoy P, Rahman P, et al. Association study of genes related to bone formation and resorption and the extent of radiographic change in ankylosing spondylitis. Ann Rheum Dis. 2015;74(7):1387–93. https://doi.org/10.1136/annrheumdis-2013-204835.

Article  CAS  PubMed  Google Scholar 

Coates LC, Baraliakos X, Blanco FJ, Blanco-Morales EA, Braun J, Chandran V, et al. The phenotype of axial spondyloarthritis: is it dependent on HLA-B27 status? Arthritis Care Res. 2021;73(6):856–60. https://doi.org/10.1002/acr.24174.

Article  CAS  Google Scholar 

Zhou X, Wang J, Zou H, Ward MM, Weisman MH, Espitia MG, et al. MICA, a gene contributing strong susceptibility to ankylosing spondylitis. Ann Rheum Dis. 2014;73(8):1552–7. https://doi.org/10.1136/annrheumdis-2013-203352.

Article  CAS  PubMed  Google Scholar 

Wang CM, Tan KP, Jan Wu YJ, Lin JC, Zheng JW, Yu AL, et al. MICA*019 allele and soluble MICA as biomarkers for ankylosing spondylitis in Taiwanese. J Pers Med. 2021;11(6):564. https://doi.org/10.3390/jpm11060564.

Article  PubMed  PubMed Central  Google Scholar 

Wang CM, Jan Wu YJ, Lin JC, Huang LY, Wu J, Chen JY. Genetic effects of B3GNT2 on ankylosing spondylitis susceptibility and clinical manifestations in Taiwanese. J Formos Med Assoc. 2022;121(7):1283–94. https://doi.org/10.1016/j.jfma.2021.09.010.

Article  CAS  PubMed  Google Scholar 

Wang CM, Tsai SC, Lin JC, Wu YJ, Wu J, Chen JY. Association of genetic variants of RANK, RANKL, and OPG with ankylosing spondylitis clinical features in Taiwanese. Mediators Inflamm. 2019;2019:8029863. https://doi.org/10.1155/2019/8029863.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoppe B, Schwedler C, Haibel H, Verba M, Proft F, Protopopov M, et al. Predictive value of C-reactive protein for radiographic spinal progression in axial spondyloarthritis in dependence on genetic determinants of fibrin clot formation and fibrinolysis. RMD Open. 2021;7(2):e001751. https://doi.org/10.1136/rmdopen-2021-001751.

Article  PubMed  PubMed Central  Google Scholar 

• Nam B, Jo S, Bang SY, Park Y, Shin JH, Park YS, et al. Clinical and genetic factors associated with radiographic damage in patients with ankylosing spondylitis. Ann Rheum Dis. 2022;82(4):527–32. This article reports a genome-wide association study of markers of spine damage.

Machado PM, Baraliakos X, van der Heijde D, Braun J, Landewé R. MRI vertebral corner inflammation followed by fat deposition is the strongest contributor to the development of new bone at the same vertebral corner: a multilevel longitudinal analysis in patients with ankylosing spondylitis. Ann Rheum Dis. 2016;75(8):1486–93. https://doi.org/10.1136/annrheumdis-2015-208011.

Article  PubMed  Google Scholar 

• Stal R, Baraliakos X, van der Heijde D, van Gaalen F, Ramiro S, van den Berg R, et al. Role of vertebral corner inflammation and fat deposition on MRI on syndesmophyte development detected on whole spine low-dose CT scan in radiographic axial spondyloarthritis. RMD Open. 2022;8(2):e002250. https://doi.org/10.1136/rmdopen-2022-002250. Vertebral inflammation predicts new syndesmophytes at the same location.

Article  PubMed  PubMed Central  Google Scholar 

Kang KY, Jung JY, Lee SK, Min HK, Hong YS, Park SH, et al. Trabecular bone score value is associated with new bone formation independently of fat metaplasia on spinal magnetic resonance imaging in patients with ankylosing spondylitis. Scand J Rheumatol. 2020;49(4):292–300. https://doi.org/10.1080/03009742.2019.1704053.

Article  CAS  PubMed  Google Scholar 

Kim JG, Jung JY, Lee J, Kwok SK, Ju JH, Park SH, et al. Can whole spine magnetic resonance imaging predict radiographic progression and inflammatory activity in axial spondyloarthritis? Joint Bone Spine. 2022;89(4):105352. https://doi.org/10.1016/j.jbspin.2022.105352.

Article  PubMed  Google Scholar 

San Koo B, Oh JS, Park SY, Shin JH, Nam B, Lee S, et al. Relationship between inflammation and radiographic progression in patients with ankylosing spondylitis attaining a BASDAI of less than 4 during tumor necrosis factor inhibitor treatment. J Rheumatol. 2022;49(12):1328–34. https://doi.org/10.3899/jrheum.220157.

Article  CAS  Google Scholar 

Lee TH, Koo BS, Nam B, Kim YJ, Son D, Lee S, et al. Age-stratified trends in the progression of spinal radiographic damage in patients with ankylosing spondylitis: a longitudinal study. Ther Adv Musculoskelet Dis. 2022;14:1759720X221100301. https://doi.org/10.1177/1759720X221100301.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Konsta M, Sakellariou GT, Rusman T, Sfikakis PP, Iliopoulos A, van der Horst-Bruinsma IE. Long-term effect of TNF inhibitors on radiographic progression in ankylosing spondylitis is associated with time-averaged CRP levels. Joint Bone Spine. 2021;88(3):105111. https://doi.org/10.1016/j.jbspin.2020.105111.

Article  CAS  PubMed  Google Scholar 

Rademacher J, Tietz LM, Le L, Hartl A, Hermann KG, Sieper J, et al. Added value of biomarkers compared with clinical parameters for the prediction of radiographic spinal progression in axial spondyloarthritis. Rheumatology (Oxford). 2019;58(9):1556–64. https://doi.org/10.1093/rheumatology/kez025.

Article  CAS  PubMed  Google Scholar 

Rademacher J, Siderius M, Gellert L, Wink FR, Verba M, Maas F, et al. Baseline serum biomarkers of inflammation, bone turnover and adipokines predict spinal radiographic progression in ankylosing spondylitis patients on TNF inhibitor therapy. Semin Arthritis Rheum. 2022;53:151974. https://doi.org/10.1016/j.semarthrit.2022.151974.

Article  CAS  PubMed  Google Scholar 

Deminger A, Klingberg E, Nurkkala M, Geijer M, Carlsten H, Jacobsson LT, et al. Elevated serum level of hepatocyte growth factor predicts development of new syndesmophytes in men with ankylosing spondylitis. Rheumatology (Oxford). 2021;60(4):1804–13. https://doi.org/10.1093/rheumatology/keaa460.

Article  CAS  PubMed  Google Scholar 

Tsui FW, Lin A, Sari I, Zhang Z, Pritzker KP, Tsui HW, et al. The role of LCN2 and LCN2-MMP9 in spondylitis radiographic development: gender and HLA-B27 status differences. Arthritis Res Ther. 2022;24(1):164. https://doi.org/10.1186/s13075-022-02854-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jo S, Lee EJ, Nam B, Kang J, Lee S, Youn J, et al. Effects of dihydrotestosterone on osteoblast activity in curdlan-administered SKG mice and osteoprogenitor cells in patients with ankylosing spondylitis. Arthritis Res Ther. 2020;22(1):121. https://doi.org/10.1186/s13075-020-02217-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Min HK, Lee J, Ju JH, Park SH, Kwok SK. Alcohol consumption as a predictor of the progression of spinal structural damage in axial spondyloarthritis: data from the Catholic Axial Spondyloarthritis COhort (CASCO). Arthritis Res Ther. 2019;21(1):187. https://doi.org/10.1186/s13075-019-1970-3.

Article  PubMed  PubMed Central  Google Scholar 

• Liu CH, Raj S, Chen CH, Hung KH, Chou CT, Chen IH, et al. HLA-B27-mediated activation of TNAP phosphatase promotes pathogenic syndesmophyte formation in ankylosing spondylitis. J Clin Invest. 2019;129(12):5357–73. https://doi.org/10.1172/JCI125212. This study describes a novel pathway linking B27 with syndesmophyte development.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ward MM, Reveille JD, Learch TJ, Davis JC Jr, Weisman MH. Occupational physical activities and long-term functional and radiographic outcomes in patients with ankylosing spondylitis. Arthritis Rheum. 2008;59(6):822–32. https://doi.org/10.1002/art.23704.

Article  PubMed  PubMed Central  Google Scholar 

• Tan S, Bagheri H, Lee D, Shafiei A, Keaveny TM, Yao L, et al. Vertebral bone mineral density, vertebral strength, and syndesmophyte growth in ankylosing spondylitis: the importance of bridging. Arthritis Rheumatol. 2022;74(8):1352–62. https://doi.org/10.1002/art.42120. This study identifies bridging as a major predictor of low vertebral bone density.

Article  CAS  PubMed  Google Scholar 

Lee SY, Song R, Yang HI, Chung SW, Lee YA, Hong SJ, et al. The bone bridge significantly affects the decrease in bone mineral density measured with quantitative computed tomography in ankylosing spondylitis. PLoS One. 2021;16(4):e0249578. https://doi.org/10.1371/journal.pone.0249578.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fauny M, Morizot C, Allado E, Verhoeven F, Albuisson E, Semaan M, et al. Consequences of spinal ankylosis on bone trabecular fragility assessed on CT scans in patients with ankylosing spondylitis. A retrospective study. Joint Bone Spine. 2020;87(6):625–31. https://doi.org/10.1016/j.jbspin.2020.05.009.

Article  PubMed  Google Scholar 

Jung JY, Kim MY, Hong YS, Park SH, Kang KY. Trabecular bone loss contributes to radiographic spinal progression in patients with axial spondyloarthritis. Semin Arthritis Rheum. 2020;50(5):827–33. https://doi.org/10.1016/j.semarthrit.2020.07.009.

Article  PubMed  Google Scholar 

Kim JW, Chung MK, Lee J, Kwok SK, Kim WU, Park SH, et al. Low bone mineral density of vertebral lateral projections can predict spinal radiographic damage in patients with ankylosing spondylitis. Clin Rheumatol. 2019;38(12):3567–74. https://doi.org/10.1007/s10067-019-04743-7.

Article  PubMed 

Comments (0)

No login
gif