Aguileta G, Bielawski JP, Yang Z (2004) Gene conversion and functional divergence in the β-globin gene family. J Mol Evol 59:177–189. https://doi.org/10.1007/s00239-004-2612-0
Article CAS PubMed Google Scholar
Aguileta G, Bielawski JP, Yang Z (2006) Proposed standard nomenclature for the α- and β-globin gene families. Genes Genet Syst 81:367–371. https://doi.org/10.1266/ggs.81.367
Article CAS PubMed Google Scholar
Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723. https://doi.org/10.1109/tac.1974.1100705
Altekar G, Dwarkadas S, Huelsenbeck JP, Ronquist F (2004) Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 20:407–415. https://doi.org/10.1093/bioinformatics/btg427
Article CAS PubMed Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
Article CAS PubMed Google Scholar
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208. https://doi.org/10.1093/nar/gkp335
Article CAS PubMed PubMed Central Google Scholar
Banville D, Williams JG (1985a) The pattern of expression of the Xenopus laevis tadpole α-globin genes and the amino acid sequence of the three major tadpole α-globin polypeptides. Nucleic Acids Res 13:5407–5421. https://doi.org/10.1093/nar/13.15.5407
Article CAS PubMed PubMed Central Google Scholar
Banville D, Williams JG (1985) Developmental changes in the pattern of larval β-globin gene expression in Xenopus laevis: identification of two early larval β-globin mRNA sequences. J Mol Biol 184:611–620. https://doi.org/10.1016/0022-2836(85)90307-9
Article CAS PubMed Google Scholar
Bridges C (1936) The bar “gene” a duplication. Science 83:210–211. https://doi.org/10.1126/science.83.2148.210
Article CAS PubMed Google Scholar
Cunningham F et al (2019) Ensembl 2019. Nucleic Acids Res 47:D745–D751
Article CAS PubMed Google Scholar
Ebner B, Panopoulou G, Vinogradov SN, Kiger L, Marden MC, Burmester T, Hankeln T (2010) The globin gene family of the cephalochordate amphioxus: implications for chordate globin evolution. BMC Evol Biol 10:370. https://doi.org/10.1186/1471-2148-10-370
Article CAS PubMed PubMed Central Google Scholar
Fago A, Giangiacomo L, D’Avino R, Carratore V, Romano M, Boffi A, Chiancone E (2001) Hagfish hemoglobins: structure, function, and oxygen-linked association. J Biol Chem 276:27415–23. https://doi.org/10.1074/jbc.M100759200
Article CAS PubMed Google Scholar
Flint J, Tufarelli C, Peden J, Clark K, Daniels RJ, Hardison R, Miller W, Philipsen S, Tan-Un KC, McMorrow T, Frampton J, Alter BP, Frischauf AM, Higgs DR (2001) Comparative genome analysis delimits a chromosomal domain and identifies key regulatory elements in the alpha globin cluster. Hum Mol Genet 10:371–82. https://doi.org/10.1093/hmg/10.4.371
Article CAS PubMed Google Scholar
Fuchs C, Burmester T, Hankeln T (2006) The amphibian globin gene repertoire as revealed by the Xenopus genome. Cytogenet Genome Res 112:296–306. https://doi.org/10.1159/000089884
Article CAS PubMed Google Scholar
Gaudry MJ, Storz JF, Butts GT, Campbell KL, Hoffmann FG (2014) Repeated evolution of chimeric fusion genes in the β-globin gene family of laurasiatherian mammals. Genome Biol Evol 6:1219–34. https://doi.org/10.1093/gbe/evu097
Article CAS PubMed PubMed Central Google Scholar
Giardina B, Mosca D, De Rosa MC (2004) The Bohr effect of haemoglobin in vertebrates: an example of molecular adaptation to different physiological requirements. Acta Physiol Scand 182:229–44. https://doi.org/10.1111/j.1365-201X.2004.01360.x
Article CAS PubMed Google Scholar
Glasauer SM, Neuhauss SC (2014) Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol Genet Genomics 289:1045–60. https://doi.org/10.1007/s00438-014-0889-2
Article CAS PubMed Google Scholar
Goldman N, Yang ZH (1994) Codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol. 11:725–736. https://doi.org/10.1093/oxfordjournals.molbev.a040153
Article CAS PubMed Google Scholar
Goodman M, Czelusniak J, Koop BF, Tagle DA, Slightom JL (1987) Globins: a case study in molecular phylogeny. Cold Spring Harb Symp Quant Biol 52:875–90. https://doi.org/10.1101/sqb.1987.052.01.096
Article CAS PubMed Google Scholar
Hardison RC (2012) Evolution of hemoglobin and its genes. Cold Spring Harb Perspect Med 2:a011627. https://doi.org/10.1101/cshperspect.a011627
Article CAS PubMed PubMed Central Google Scholar
Hoffmann FG, Opazo JC, Storz JF (2010a) Gene cooption and convergent evolution of oxygen transport hemoglobins in jawed and jawless vertebrates. Proc Natl Acad Sci USA 107:14274–9. https://doi.org/10.1073/pnas.1006756107
Article PubMed PubMed Central Google Scholar
Hoffmann FG, Storz JF, Gorr TA, Opazo JC (2010b) Lineage-specific patterns of functional diversification in the alpha- and beta-globin gene families of tetrapod vertebrates. Mol Biol Evol 27:1126–1138. https://doi.org/10.1093/molbev/msp325
Article CAS PubMed PubMed Central Google Scholar
Hoffmann FG, Opazo JC, Storz JF (2011) Differential loss and retention of cytoglobin, myoglobin, and globin-E during the radiation of vertebrates. Genome Biol Evol 3:588–600. https://doi.org/10.1093/gbe/evr055
Article CAS PubMed PubMed Central Google Scholar
Hoffmann FG, Opazo JC, Hoogewijs D, Hankeln T, Ebner B, Vinogradov SN, Bailly X, Storz JF (2012) Evolution of the globin gene family in deuterostomes: lineage-specific patterns of diversification and attrition. Mol Biol Evol 29:1735–45. https://doi.org/10.1093/molbev/mss018
Article CAS PubMed PubMed Central Google Scholar
Hoffmann FG, Opazo JC, Storz JF (2012b) Whole-genome duplications spurred the functional diversification of the globin gene superfamily in vertebrates. Mol Biol Evol 29:303–312. https://doi.org/10.1093/molbev/msr207
Article CAS PubMed Google Scholar
Hoffmann FG, Vandewege MW, Storz JF, Opazo JC (2018) Gene turnover and diversification of the α- and β-Globin gene families in sauropsid vertebrates. Genome Biol Evol 10:344–358. https://doi.org/10.1093/gbe/evy001
Article CAS PubMed PubMed Central Google Scholar
Honzatko RB, Hendrickson WA (1986) Molecular models for the putative dimer of sea lamprey hemoglobin. Proc Natl Acad Sci USA 83:8487–8491. https://doi.org/10.1073/pnas.83.22.8487
Article CAS PubMed PubMed Central Google Scholar
Hosbach HA, Wyler T, Weber R (1983) The Xenopus laevis globin gene family: chromosomal arrangement and gene structure. Cell 32:45–53. https://doi.org/10.1016/0092-8674(83)90495-6
Article CAS PubMed Google Scholar
Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297. https://doi.org/10.1093/bioinformatics/btu817
Jeffreys AJ, Wilson V, Wood D, Simons JP, Kay RM, Williams JG (1980) Linkage of adult alpha- and beta-globin genes in X. laevis and gene duplication by tetraploidization. Cell 21:555–564. https://doi.org/10.1016/0092-8674(80)90493-6
Article CAS PubMed Google Scholar
Jetz W, Fine PV (2012) Global gradients in vertebrate diversity predicted by historical area-productivity dynamics and contemporary environment. PLoS Biol 10:e1001292. https://doi.org/10.1371/journal.pbio.1001292
Article CAS PubMed PubMed Central Google Scholar
Johnson RM, Buck S, Chiu C, Schneider H, Sampaio I, Gage DA, Shen TL, Schneider MP, Muniz JA, Gumucio DL, Goodman M (1996) Fetal globin expression in New World monkeys. J Biol Chem 271:14684–14691. https://doi.org/10.1074/jbc.271.25.14684
Article CAS PubMed Google Scholar
Kaessmann H (2010) Origins, evolution, and phenotypic impact of new genes. Genome Res 20:1313–1326. https://doi.org/10.1101/gr.101386.109
Article CAS PubMed PubMed Central Google Scholar
Kakar S, Hoffman FG, Storz JF, Fabian M, Hargrove MS (2010) Structure and reactivity of hexacoordinate hemoglobins. Biophys Chem 152:1–14. https://doi.org/10.1016/j.bpc.2010.08.008
Comments (0)