Molecular evolution of the hemoglobin gene family across vertebrates

Aguileta G, Bielawski JP, Yang Z (2004) Gene conversion and functional divergence in the β-globin gene family. J Mol Evol 59:177–189. https://doi.org/10.1007/s00239-004-2612-0

Article  CAS  PubMed  Google Scholar 

Aguileta G, Bielawski JP, Yang Z (2006) Proposed standard nomenclature for the α- and β-globin gene families. Genes Genet Syst 81:367–371. https://doi.org/10.1266/ggs.81.367

Article  CAS  PubMed  Google Scholar 

Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723. https://doi.org/10.1109/tac.1974.1100705

Article  Google Scholar 

Altekar G, Dwarkadas S, Huelsenbeck JP, Ronquist F (2004) Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 20:407–415. https://doi.org/10.1093/bioinformatics/btg427

Article  CAS  PubMed  Google Scholar 

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

Article  CAS  PubMed  Google Scholar 

Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208. https://doi.org/10.1093/nar/gkp335

Article  CAS  PubMed  PubMed Central  Google Scholar 

Banville D, Williams JG (1985a) The pattern of expression of the Xenopus laevis tadpole α-globin genes and the amino acid sequence of the three major tadpole α-globin polypeptides. Nucleic Acids Res 13:5407–5421. https://doi.org/10.1093/nar/13.15.5407

Article  CAS  PubMed  PubMed Central  Google Scholar 

Banville D, Williams JG (1985) Developmental changes in the pattern of larval β-globin gene expression in Xenopus laevis: identification of two early larval β-globin mRNA sequences. J Mol Biol 184:611–620. https://doi.org/10.1016/0022-2836(85)90307-9

Article  CAS  PubMed  Google Scholar 

Bridges C (1936) The bar “gene” a duplication. Science 83:210–211. https://doi.org/10.1126/science.83.2148.210

Article  CAS  PubMed  Google Scholar 

Cunningham F et al (2019) Ensembl 2019. Nucleic Acids Res 47:D745–D751

Article  CAS  PubMed  Google Scholar 

Ebner B, Panopoulou G, Vinogradov SN, Kiger L, Marden MC, Burmester T, Hankeln T (2010) The globin gene family of the cephalochordate amphioxus: implications for chordate globin evolution. BMC Evol Biol 10:370. https://doi.org/10.1186/1471-2148-10-370

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fago A, Giangiacomo L, D’Avino R, Carratore V, Romano M, Boffi A, Chiancone E (2001) Hagfish hemoglobins: structure, function, and oxygen-linked association. J Biol Chem 276:27415–23. https://doi.org/10.1074/jbc.M100759200

Article  CAS  PubMed  Google Scholar 

Flint J, Tufarelli C, Peden J, Clark K, Daniels RJ, Hardison R, Miller W, Philipsen S, Tan-Un KC, McMorrow T, Frampton J, Alter BP, Frischauf AM, Higgs DR (2001) Comparative genome analysis delimits a chromosomal domain and identifies key regulatory elements in the alpha globin cluster. Hum Mol Genet 10:371–82. https://doi.org/10.1093/hmg/10.4.371

Article  CAS  PubMed  Google Scholar 

Fuchs C, Burmester T, Hankeln T (2006) The amphibian globin gene repertoire as revealed by the Xenopus genome. Cytogenet Genome Res 112:296–306. https://doi.org/10.1159/000089884

Article  CAS  PubMed  Google Scholar 

Gaudry MJ, Storz JF, Butts GT, Campbell KL, Hoffmann FG (2014) Repeated evolution of chimeric fusion genes in the β-globin gene family of laurasiatherian mammals. Genome Biol Evol 6:1219–34. https://doi.org/10.1093/gbe/evu097

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giardina B, Mosca D, De Rosa MC (2004) The Bohr effect of haemoglobin in vertebrates: an example of molecular adaptation to different physiological requirements. Acta Physiol Scand 182:229–44. https://doi.org/10.1111/j.1365-201X.2004.01360.x

Article  CAS  PubMed  Google Scholar 

Glasauer SM, Neuhauss SC (2014) Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol Genet Genomics 289:1045–60. https://doi.org/10.1007/s00438-014-0889-2

Article  CAS  PubMed  Google Scholar 

Goldman N, Yang ZH (1994) Codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol. 11:725–736. https://doi.org/10.1093/oxfordjournals.molbev.a040153

Article  CAS  PubMed  Google Scholar 

Goodman M, Czelusniak J, Koop BF, Tagle DA, Slightom JL (1987) Globins: a case study in molecular phylogeny. Cold Spring Harb Symp Quant Biol 52:875–90. https://doi.org/10.1101/sqb.1987.052.01.096

Article  CAS  PubMed  Google Scholar 

Hardison RC (2012) Evolution of hemoglobin and its genes. Cold Spring Harb Perspect Med 2:a011627. https://doi.org/10.1101/cshperspect.a011627

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoffmann FG, Opazo JC, Storz JF (2010a) Gene cooption and convergent evolution of oxygen transport hemoglobins in jawed and jawless vertebrates. Proc Natl Acad Sci USA 107:14274–9. https://doi.org/10.1073/pnas.1006756107

Article  PubMed  PubMed Central  Google Scholar 

Hoffmann FG, Storz JF, Gorr TA, Opazo JC (2010b) Lineage-specific patterns of functional diversification in the alpha- and beta-globin gene families of tetrapod vertebrates. Mol Biol Evol 27:1126–1138. https://doi.org/10.1093/molbev/msp325

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoffmann FG, Opazo JC, Storz JF (2011) Differential loss and retention of cytoglobin, myoglobin, and globin-E during the radiation of vertebrates. Genome Biol Evol 3:588–600. https://doi.org/10.1093/gbe/evr055

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoffmann FG, Opazo JC, Hoogewijs D, Hankeln T, Ebner B, Vinogradov SN, Bailly X, Storz JF (2012) Evolution of the globin gene family in deuterostomes: lineage-specific patterns of diversification and attrition. Mol Biol Evol 29:1735–45. https://doi.org/10.1093/molbev/mss018

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoffmann FG, Opazo JC, Storz JF (2012b) Whole-genome duplications spurred the functional diversification of the globin gene superfamily in vertebrates. Mol Biol Evol 29:303–312. https://doi.org/10.1093/molbev/msr207

Article  CAS  PubMed  Google Scholar 

Hoffmann FG, Vandewege MW, Storz JF, Opazo JC (2018) Gene turnover and diversification of the α- and β-Globin gene families in sauropsid vertebrates. Genome Biol Evol 10:344–358. https://doi.org/10.1093/gbe/evy001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Honzatko RB, Hendrickson WA (1986) Molecular models for the putative dimer of sea lamprey hemoglobin. Proc Natl Acad Sci USA 83:8487–8491. https://doi.org/10.1073/pnas.83.22.8487

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hosbach HA, Wyler T, Weber R (1983) The Xenopus laevis globin gene family: chromosomal arrangement and gene structure. Cell 32:45–53. https://doi.org/10.1016/0092-8674(83)90495-6

Article  CAS  PubMed  Google Scholar 

Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297. https://doi.org/10.1093/bioinformatics/btu817

Article  PubMed  Google Scholar 

Jeffreys AJ, Wilson V, Wood D, Simons JP, Kay RM, Williams JG (1980) Linkage of adult alpha- and beta-globin genes in X. laevis and gene duplication by tetraploidization. Cell 21:555–564. https://doi.org/10.1016/0092-8674(80)90493-6

Article  CAS  PubMed  Google Scholar 

Jetz W, Fine PV (2012) Global gradients in vertebrate diversity predicted by historical area-productivity dynamics and contemporary environment. PLoS Biol 10:e1001292. https://doi.org/10.1371/journal.pbio.1001292

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johnson RM, Buck S, Chiu C, Schneider H, Sampaio I, Gage DA, Shen TL, Schneider MP, Muniz JA, Gumucio DL, Goodman M (1996) Fetal globin expression in New World monkeys. J Biol Chem 271:14684–14691. https://doi.org/10.1074/jbc.271.25.14684

Article  CAS  PubMed  Google Scholar 

Kaessmann H (2010) Origins, evolution, and phenotypic impact of new genes. Genome Res 20:1313–1326. https://doi.org/10.1101/gr.101386.109

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kakar S, Hoffman FG, Storz JF, Fabian M, Hargrove MS (2010) Structure and reactivity of hexacoordinate hemoglobins. Biophys Chem 152:1–14. https://doi.org/10.1016/j.bpc.2010.08.008

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif