Carvalho CR, Saraiva LS (1993) An air drying technique for maize chromosomes without enzymatic maceration. Biotech Histochem 68:142–145. https://doi.org/10.3109/10520299309104684
Chen NWM, Thareau V, Ribeiro T, Magdelenat G, Ashfield T, Innes RW, Pedrosa-Harand A, Geffroy V (2018) Common bean subtelomeres are hot spots of recombination and favor resistance gene evolution. Front Plant Sci 9:1185. https://doi.org/10.3389/fpls.2018.01185
Article PubMed PubMed Central Google Scholar
Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: A sequence logo generator. Genome Res 14:1188–1190. https://doi.org/10.1101/gr.849004
Article CAS PubMed PubMed Central Google Scholar
de Souza RC, Marques DA, Filho MMC, Oliveira ARS, Siqueira WJ, Benko-Iseppon AM, Brasileiro-Vidal AC (2019) Genome composition and pollen viability of Jatropha (Euphorbiaceae) interspecific hybrids by genomic in situ hybridization (GISH). Genet Mol Biology 42(4):e20190112. https://doi.org/10.1590/1678-4685-GMB-2019-0112
Dehgan B (1984) Phylogenetic significance of interspecific hybridization in Jatropha (Euphorbiaceae). Systematic Botany (1984), 9(4): pp. 467–478
Ferreira ME, Grattapaglia D (1995) Introdução ao ao uso de marcadores moleculares em analise genetica. 3 ed. Brasilia: EMBRAPA-CENARGEN, 1998. p 220
Fukuhara S, Muakrong N, Kikuchi S, Tanya P, Sassa H, Koba T, Srinives P (2016) Cytological characterization of an interspecific hybrid in Jatropha and its progeny reveals preferential uniparental chromosome transmission and interspecific translocation. Breeding Science 66: 838–844 (2016)https://doi.org/10.1270/jsbbs.16069
Garrido-Ramos MA (2015) Satellite DNA in plants: more than just rubbish. Cytogenet Genome Res 146:153–170. https://doi.org/10.1159/000437008
Article CAS PubMed Google Scholar
Ishii T, Juranić M, Maheshwari S, Bustamante FO, Vogt M, Gamboa-Salinas R et al (2020) Unequal contribution of two paralogous CENH3 variants in cowpea centromere function. Commun Biology 3:775. https://doi.org/10.1038/s42003-020-01507-x
Iwata A, Tek AL, Richard MMS, Abernathy B, Fônseca A, Schmutz J et al (2013) Identification and characterization of functional centromeres of the common bean. Plant J 76:47–60. https://doi.org/10.1111/tpj.12269
Article CAS PubMed Google Scholar
Kazama Y, Sugiyama R, Suto Y, Uchida W, Kawano S (2006) The clustering of four subfamilies of satellite DNA at individual chromosome ends in Silene latifolia. Genome 49(5):520–530. https://doi.org/10.1139/g05-130
Article CAS PubMed Google Scholar
Kikuchi S, Tsujimoto H, Sassa H, Koba T (2010) JcSat1, a novel subtelomeric repeat of Jatropha curcas L. and its use in karyotyping. Chromosome Sci 1311–16. https://doi.org/10.11352/scr.13.11
Leclear NM (2019) Evolution of Jatropha: Phylogenetics, Biogeography, and Phylogeography. Dissertation, University of Texas at Austin
Lima LG, Svartman M, Kuhn GCS (2017) Dissecting the satellite DNA landscape in three cactophilic Drosophila sequenced genomes. G3 7:2831–2843. https://doi.org/10.1534/g3.117.042093
Linardopoulou EV, Williams EM, Fan Y, Friedman C, Young JM, Trask BJ (2005) Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication. Nature 473(7055):94–100. https://doi.org/10.1038/nature04029
Article CAS ADS Google Scholar
Lower SS, McGurk MP, Clark AG, Barbash DA (2018) Satellite DNA evolution: old ideas, new approaches. Curr Opin Genet Dev 49:70–78. https://doi.org/10.1016/j.gde.2018.03.003
Article CAS PubMed PubMed Central Google Scholar
Marinho ACTA, Vasconcelos S, Vasconcelos EV, Marques DA, Benko-Iseppon AM, Brasileiro-Vidal AC (2018) Karyotype and genome size comparative analyses among six species of the oilseed-bearing genus Jatropha (Euphorbiaceae). Genet Mol Biology 41(2):442–449. https://doi.org/10.1590/1678-4685-GMB-2017-0120
Mefford HC, Trask BJ (2002) The complex structure and dynamic evolution of human subtelomeres. Nat Rev 3:91–102
Mlinarec J, Skuhala A, Jurković A, Malenica N, McCann J, Weiss-Schneeweiss H, Bohanec B, Besendorfer V (2019) The repetitive DNA composition in the natural pesticide producer Tanacetum cinerariifolium: interindividual variation of subtelomeric tandem repeats. Front Plant Sci 10:613. https://doi.org/10.3389/fpls.2019.00613
Article PubMed PubMed Central Google Scholar
Muakrong N, Kikuchi S, Tanya P, Srinives P (2018a) Conservation and variation of 35S ribosomal DNA among five Jatropha species revealed by Fluorescence. Situ Hybrid Cytologia 83(1):57–61. https://doi.org/10.1508/cytologia.83.57
Muakrong N, Kikuchi S, Fukuhara S, Tanya P, Srinives P (2018b) Two Jatropha karyotypes constructed from meiotic pachytene chromosomes: pericentric distribution of heterochromatin and variation in repetitive DNAs. PLoS ONE 13(12):e0208549. https://doi.org/10.1371/journal.pone.0208549
Article CAS PubMed PubMed Central Google Scholar
Navajas-Pérez R, Schwarzacher T, Rejón MR, Garrido-Ramos MA (2009) Characterization of RUSI, a telomere-associated satellite DNA, in the genus Rumex (Polygonaceae). Cytogenet Genome Res 124:81–89. https://doi.org/10.1159/000200091
Article CAS PubMed Google Scholar
Novák P, Neumann P, Macas J (2020) Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nat Protoc 15(11):3745–3776. https://doi.org/10.1038/s41596-020-0400-y
Article CAS PubMed Google Scholar
Pedrosa A, Sandal N, Stougaard J, Schweizer D, Bachmair A (2002) Chromosomal map of the model legume Lotus japonicus. Genetics 161:1661–1672
Article CAS PubMed PubMed Central Google Scholar
Pullaiah T, Bahadur B (2013) Economic and Medicinal Importance of Jatrophas. In: Bahadur B, Sujatha M, Carels M (eds) Jatropha, challenges for a new energy crop, volume 2: genetic improvement and biotechnology, 1st edn. Springer Science + Business Media, New York, pp 187–217
Reddy MP, Sudheer DVN, Mastan SG, Rahman H, Carels N, Bahadur B (2013) Karyology and genomics of Jatropha: current status and future prospects. In: Bahadur B, Sujatha M, Carels M (eds) Jatropha, challenges for a new energy crop. Genetic Improvement and Biotechnology, vol 2, 1st edn. Springer Science + Business Media, New York, pp 301–320
Ribeiro T, Santos KGB, Fonsêca A, Pedrosa-Harand A (2011) Isolation and characterization of a new repetitive DNA family recently amplified in the mesoamerican gene pool of the common bean (Phaseolus vulgaris L., Fabaceae). Genetica 139:1135–1142. https://doi.org/10.1007/s10709-011-9615-8
Ribeiro T, dos Santos KGB, Richard MMS, Sévignac M, Thareau V, Geffroy V, Pedrosa-Harand A (2017) Evolutionary dynamics of satellite DNA repeats from Phaseolus beans. Protoplasma 254:791–801. https://doi.org/10.1007/s00709-016-0993-8
Article CAS PubMed Google Scholar
Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M et al (2011) Sequence analysis of the genome of an oil-bearing Tree, Jatropha curcas L. DNA Res 18(1):65–76. https://doi.org/10.1093/dnares/dsq030
Article CAS PubMed Google Scholar
Šatović-Vukšić E, Plohl M (2023) Satellite DNAs - from localized to highly dispersed genome components. Genes 14(3):742. https://doi.org/10.3390/genes14030742
Sonnhammer ELL, Durbin R (1995) A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 167(1–2):GC1–G10. https://doi.org/10.1016/0378-1119(95)00714-8
Article CAS PubMed Google Scholar
Thakur J, Packiaraj J, Henikoff S (2021) Sequence, chromatin and evolution of Satellite DNA. Int J Mol Sci 22(9):4309. https://doi.org/10.3390/ijms22094309
Article CAS PubMed PubMed Central Google Scholar
Torres GA, Gong Z, Iovene M, Hirsch CD, Buell CR et al (2011) Organization and evolution of subtelomeric satellite repeats in the potato genome. Genes Genomes Genet 1(2):85–92. https://doi.org/10.1534/g3.111.000125
Vasconcelos S, Souza AA, Gusmão CLS, Milani M, Benko-Iseppon AM, Brasileiro-Vidal AC (2010) Heterochromatin and rDNA 5S and 45S sites as reliable cytogenetic markers for castor bean (Ricinus communis, Euphorbiaceae). Micron 41:746–753. https://doi.org/10.1016/j.micron.2010.06.002
Article CAS PubMed Google Scholar
Wanzenböck E-M, Schöfer C, Schweizer D, Bachmair A (1997) Ribosomal transcription units integrated via T-DNA transformation associate with the nucleolus and do not require upstream repeat sequences for activity in Arabidopsis thaliana. Plant J 11:1007–1016
Comments (0)