Bandel G (1974) Chromosome numbers and evolution in the Leguminosae. Caryologia 27 1:17–32. https://doi.org/10.1080/00087114.1974.10796558
Biondo E, Miotto STS, Schifino-Wittmann MT (2005) Números cromossômicos e implicações sistemáticas em espécies Da subfamília Caesalpinioideae (Leguminosae) ocorrentes na região Sul do Brasil. Rev Bras Botânica 28:797–808. https://doi.org/10.1590/S0100-84042005000400014
Biondo E, Miotto STS, Schifino-Wittmann MT (2006) Cytogenetics of species of Chamaecrista (Leguminosae – Caesalpinioideae) native to southern Brazil. Bot J Linn Soc 150:429–439. https://doi.org/10.1111/j.1095-8339.2006.00480.x
Cannon SB, McKain MR, Harkess A et al (2015) Multiple polyploidy events in the early radiation of nodulating and nonnodulating legumes. Mol Biol Evol 32:193–210. https://doi.org/10.1093/molbev/msu296
Article CAS PubMed Google Scholar
Chiavegatto RB, Carta A, Pereira DGS et al (2020) Reconstructing ancestral chromosome numbers and inflorescence features in Eleusininae (Poaceae: Chloridoideae: Cynodonteae). Bot J Linn Soc 193:402–418. https://doi.org/10.1093/botlinnean/boaa015
Clarkson JJ, Dodsworth S, Chase MW (2017) Time-calibrated phylogenetic trees establish a lag between polyploidisation and diversification in Nicotiana (Solanaceae). Plant Syst Evol 303:1001–1012. https://doi.org/10.1007/s00606-017-1416-9
Conceição AS, Queiroz LP, Lewis GP et al (2009) Phylogeny of Chamaecrista Moench (LeguminosaeCaesalpinioideae) based on nuclear and chloroplast DNA regions. Taxon 58:1168–1180. https://doi.org/10.1002/tax.584010
Cordeiro JMP, Felix LP (2018) Intra- and interspecific karyotypic variations of the genus Senna Mill. Caesalpinioideae) Acta Bot Brasilica 32:128–134. https://doi.org/10.1590/0102-33062017abb0274. Fabaceae
de Souza AO, Lewis GP, da Silva MJ (2021) A new infrageneric classification of the pantropical genus Chamaecrista (Fabaceae: Caesalpinioideae) based on a comprehensive molecular phylogenetic analysis and morphology. Bot J Linn Soc 1–46. https://doi.org/10.1093/botlinnean/boab029
Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244. https://doi.org/10.1038/nprot.2007.310
Article CAS PubMed Google Scholar
Dong F, Song J, Naess SK et al (2000) Development and applications of a set of chromosome-specific cytogenetic DNA markers in potato. Theor Appl Genet 101:1001–1007. https://doi.org/10.1007/s001220051573
Doyle J, Doyle J (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15
Du Y, Bi Y, Zhang M et al (2017) Genome size diversity in Lilium (Liliaceae) is correlated with karyotype and environmental traits. Front Plant Sci 8:1–11. https://doi.org/10.3389/fpls.2017.01303
Fidalgo O, Bononi V (1984) Técnicas De Coleta, preservação e herborização de material botânico. Instituto de Botânica, São Paulo
Gagnon E, Ringelberg JJ, Bruneau A et al (2019) Global succulent biome phylogenetic conservatism across the pantropical Caesalpinia Group (Leguminosae). New Phytol 222:1994–2008. https://doi.org/10.1111/nph.15633
Glick L, Mayrose I (2014) ChromEvol: assessing the pattern of chromosome number evolution and the inference of Polyploidy along a phylogeny. Mol Biol Evol 31:1914–1922. https://doi.org/10.1093/molbev/msu122
Article CAS PubMed Google Scholar
Guerra M, Souza MD (2002) Como observar cromossomos: um guia de técnicas em citogenética vegetal, animal e humana. FUNPEC, Ribeirão Preto, p 201
Irwin HS, Turner BL (1960) Chromosomal relationships and taxonomic considerations in the genus Cassia. Am J Bot 47:309–318. https://doi.org/10.1002/j.1537-2197.1960.tb07130.x
Koenen EJM, Ojeda DI, Bakker FT et al (2021) The origin of the Legumes is a Complex Paleopolyploid Phylogenomic Tangle closely Associated with the cretaceous–paleogene (K–Pg) Mass extinction event. Syst Biol 70:508–526. https://doi.org/10.1093/sysbio/syaa041
Kovarik A, Dadejova M, Lim YK et al (2008) Evolution of rDNA in Nicotiana allopolyploids: a potential link between rDNA homogenization and epigenetics. Ann Bot 101:815–823. https://doi.org/10.1093/aob/mcn019
Article CAS PubMed PubMed Central Google Scholar
Legendre P, Legendre L (2012) Numerical ecology. Elsevier
Legume Phylogeny Working Group (LPWG) (2023) The World checklist of vascular plants (WCVP): Fabaceae. Royal Botanic Gardens Kew. https://doi.org/10.15468/mvhaj3
Lewis G (2005) Tribo Cassieae. In: Schrire B, Mackinder B, Lock M (eds) Legumes of the world. Royal Botanic Gardens, Kew, pp 111–124
Lyu H, He Z, Wu C-I, Shi S (2018) Convergent adaptive evolution in marginal environments: unloading transposable elements as a common strategy among mangrove genomes. New Phytol 217:428–438. https://doi.org/10.1111/nph.14784
Article CAS PubMed Google Scholar
Maddison W, Maddison D (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75. http://www.mesquiteproject.org
Marazzi B, Sanderson MJ (2010) Large-scale patterns of diversification in the widespread legume genus Senna and the evolutionary role of extrafloral nectaries. Evol (NY) 64:3570–3592. https://doi.org/10.1111/j.1558-5646.2010.01086.x
Marie D, Brown SC (1993) A cytometric exercise in plant DNA histograms, with 2 C values for 70 species. Biol Cell 78:41–51. https://doi.org/10.1016/0248-4900(93)90113-S
Article CAS PubMed Google Scholar
Mata-Sucre Y, Sader M, Van-Lume B et al (2020) How diverse is heterochromatin in the Caesalpinia group? Cytogenomic characterization of Erythrostemon Hughesii Gagnon & GP Lewis (Leguminosae: Caesalpinioideae). Planta 252:1–14. https://doi.org/10.1007/s00425-020-03453-8
Mata-Sucre Y, Costa L, Gagnon E et al (2020a) Revisiting the cytomolecular evolution of the Caesalpinia group (Leguminosae): a broad sampling reveals new correlations between cytogenetic and environmental variables. Plant Syst Evol 306:48. https://doi.org/10.1007/s00606-020-01674-8
Mayrose I, Barker MS, Otto SP (2010) Probabilistic models of chromosome number evolution and the inference of Polyploidy. Syst Biol 59:132–144. https://doi.org/10.1093/sysbio/syp083
Montenegro C, do Vale Martins L, Bustamante FO et al (2022) Comparative cytogenomics reveals genome reshuffling and centromere repositioning in the legume tribe Phaseoleae. Chromosome Res 1–16. https://doi.org/10.1007/s10577-022-09702-8
Ohri D, Kumar A, Pal M (1986) Correlations between 2 C DNA values and habit in Cassia (Leguminosae:Caesalpinioideae). Plant Syst Evol 153:223–227. https://doi.org/10.1007/BF00983689
Pellerin RJ, Waminal NE, Kim HH (2019) FISH mapping of rDNA and telomeric repeats in 10 Senna species. Hortic Environ Biotechnol 60:253–260. https://doi.org/10.1007/s13580-018-0115-y
Posada D (2008) jModelTest: phylogenetic Model Averaging. Mol Biol Evol 25:1253–1256. https://doi.org/10.1093/molbev/msn083
Article CAS PubMed Google Scholar
Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Molecular biology and evolution 26:1641–1650. https://doi.org/10.1093/molbev/msp077
Puttick MN, Clark J, Donoghue PCJ (2015) Size is not everything: rates of genome size evolution, not C-value, correlate with speciation in Angiosperms. Proc R Soc B Biol Sci 282:20152289. https://doi.org/10.1098/rspb.2015.2289
Qiu F, Baack EJ, Whitney KD et al (2019) Phylogenetic trends and environmental correlates of nuclear genome size variation in Helianthus sunflowers. New Phytol 221:1609–1618. https://doi.org/10.1111/nph.15465
Article CAS PubMed Google Scholar
Rambaut A (2007) FigTree, a graphical viewer of phylogenetic trees. http://tree.bio.ed.ac.uk/software/figtree
Rando JG, Pirani JR (2011) Padrões de distribuição geográfica das espécies de Chamaecrista sect. Chamaecrista ser. Coriaceae (Benth.) H.S.Irwin & Barneby, Leguminosae - Caesalpinioideae. Brazilian J Bot 34:499–513. https://doi.org/10.1590/S0100-84042011000400004
Rando JG, Zuntini AR, Conceição AS et al (2016) Phylogeny of Chamaecrista ser. Coriaceae (Leguminosae) Unveils a Lineage Recently Diversified in Brazilian Campo Rupestre Vegetation. Int J Plant Sci 177:3–17. https://doi.org/10.1086/683846
Rando JG, Cota MMT, de Lima AG et al (2023) Tribe Cassieae. In: Bruneau A, Ringelberg J, Queiroz LP (Eds) Advances in Legume Systematics 14. Classification of Caesalpinioideae Part 2. In Press, Phytokeys
Roa F, Guerra M (2015) Non-random distribution of 5S rDNA sites and its association with 45S rDNA in plant chromosomes. Cytogenet Genome Res 146:243–249. https://doi.org/10.1159/000440930
Article CAS PubMed Google Scholar
Ronquist F, Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. https://doi.org/10.1093/bioinformatics/btg180
Article CAS PubMed Google Scholar
Rosito JM, Batista LRM (1985) Leguminosas Caesalpinioideae E Mimosoideae nativas do RS, com valor forrageiro - Uma Revisão. Ciência e Nat 7:163. https://doi.org/10.5902/2179460X25420
Schubert I, Lysak MA (2011) Interpretation of karyotype evolution should consider chromosome structural constraints. Trends Genet 27:207–216. https://doi.org/10.1016/j.tig.2011.03.004
Article CAS PubMed Google Scholar
Souza V, Bortoluzzi R (2015) Chamaecrista Moench. In: List. Espécies da Flora do Bras. http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB22876
Souza V, Lorenzi H (2008) Botânica Sistemática: guia ilustrado para identificação das familias brasileiras de fanerógamas nativas e exóticas no Brasil, baseado em APG II. Instituto Plantarum, Nova Odessa
Souza LGR, Crosa O, Speranza P, Guerra M (2012) Cytogenetic and molecular evidence suggest multiple origins and geographical parthenogenesis in Nothoscordum gracile (Alliaceae). Ann Bot 109:987–999. https://doi.org/10.1093/aob/mcs020
Comments (0)