Recent development of microfluidics-based platforms for respiratory virus detection

Indirect detectionViral particlesCell cultureInfluenza virus, HRSV, HPIV, HMPV, HRV, HCoV, HAdVClinical samplesDays-weeksGold standard; Accurate method; High sensitivity; Direct measure the infectivity of virusTime-consuming and labor-intensive procedures; Not suitable for slow-growing virus; Require viability of virus; Require laboratory environment and trained personnel29–3229. J. F. Enders, Annu. Rev. Microbiol. 8, 473–502 (1954). https://doi.org/10.1146/annurev.mi.08.100154.00235330. C. S. Goldsmith and S. E. Miller, Clin. Microbiol. Rev. 22, 552–563 (2009). https://doi.org/10.1128/CMR.00027-0931. E. M. Connor and M. R. Loeb, J. Infect. Dis. 148, 855–860 (1983). https://doi.org/10.1093/infdis/148.5.85532. F. Fenner, B. R. McAuslan, C. A. Mims, J. Sambrook, and D. O. White, “Chapter 2,” in The Biology of Animal Viruses (Elsevier, 1974), p. 35. https://doi.org/10.1016/B978-0-12-253040-1.50007-5Rapid cell cultureInfluenza A&B virus, HPIV-1–3, HMPV, and HRSVClinical samples1–2 daysRelatively fast; Monolayer cell growth; Co-cultured cell linesNarrow detection range; Require laboratory environment and trained personnel3333. C. A. Gleaves, T. F. Smith, E. A. Shuster, and G. R. Pearson, J. Clin. Microbiol. 19, 917–919 (1984). https://doi.org/10.1128/jcm.19.6.917-919.1984 and 3434. A. J. McAdam and A. M. Riley, Clin. Lab Med. 29, 623–634 (2009). https://doi.org/10.1016/j.cll.2009.07.009AntibodiesIndirect IFAInfluenza virus, HRSV, HPIV, HMPV, HRV, HCoV, HAdV, HBoVHuman serum, plasma, whole blood3–4 hAmplified signal; High sensitivity; Broad detection range; Easier and safer for operators“Window period” existence; Time-consuming procedure; Two-step staining; Potential cross reactivity; Require laboratory environment and trained personnel3535. B. Meyer, G. Torriani, S. Yerly, L. Mazza, A. Calame, I. Arm-Vernez, G. Zimmer, T. Agoritsas, J. Stirnemann, H. Spechbach, I. Guessous, S. Stringhini, J. Pugin, P. Roux-Lombard, L. Fontao, C. A. Siegrist, I. Eckerle, N. Vuilleumier, and L. Kaiser, Clin. Microbiol. Infect. 26, 1386–1394 (2020). https://doi.org/10.1016/j.cmi.2020.06.024 and 3636. M. Michel, A. Bouam, S. Edouard, F. Fenollar, F. DiPinto, J. L. Mège, M. Drancourt, and J. Vitte, Front. Microbiol. 11, 597529 (2020). https://doi.org/10.3389/fmicb.2020.597529ELISAInfluenza virus, HRSV, HPIV, HMPV, HRV, HCoV, HAdV, HBoVHuman serum, plasma, whole blood2–3hWell-established and robust; High specificity; Easier and safer for operators“Window period” existence; Relatively time-consuming; Moderate sensitivity; Require laboratory environment and trained personnel3636. M. Michel, A. Bouam, S. Edouard, F. Fenollar, F. DiPinto, J. L. Mège, M. Drancourt, and J. Vitte, Front. Microbiol. 11, 597529 (2020). https://doi.org/10.3389/fmicb.2020.597529 and 3737. K. G. Beavis, S. M. Matushek, A. P. F. Abeleda, C. Bethel, C. Hunt, S. Gillen, A. Moran, and V. Tesic, J. Clin. Virol. 129, 104468 (2020). https://doi.org/10.1016/j.jcv.2020.104468LFAInfluenza A&B virus, HRSV, SARS-CoV-2Fingerpick samples15 minQuick and easy-to-handle; Direct reading; Point-of-care application; Easier and safer for operators“Window period” existence; Low specificity and sensitivity; Qualitative assessment3636. M. Michel, A. Bouam, S. Edouard, F. Fenollar, F. DiPinto, J. L. Mège, M. Drancourt, and J. Vitte, Front. Microbiol. 11, 597529 (2020). https://doi.org/10.3389/fmicb.2020.597529 and 3838. T. Wen, C. Huang, F. J. Shi, X. Y. Zeng, T. Lu, S. N. Ding, and Y. J. Jiao, Analyst 145, 5345–5352 (2020). https://doi.org/10.1039/D0AN00629GDirect detectionNucleic acidsRT-PCRInfluenza virus, HRSV, HPIV, HMPV, HRV, HCoV, HAdV, HBoVNasopharyngeal/oropharyngeal swabs; Lower respiratory specimen1–2 hQuantitative results; High sensitivity and specificity; Amenable to high-volume testing; Widely usedRelatively time-consuming and labor-intensive procedures; Expensive; Require laboratory environment and trained personnel3939. World Health Organization [W.H.O.], Protocol:Real-Time RT-PCR Assays for the Detection of SARS-CoV-2 (Institut Pasteur, Paris). and 4040. E. Kortela, V. Kirjavainen, M. J. Ahava, S. T. Jokiranta, A. But, A. Lindahl, A. E. Jääskeläinen, A. J. Jääskeläinen, A. Järvinen, P. Jokela, H. Kallio-Kokko, R. Loginov, L. Mannonen, E. Ruotsalainen, T. Sironen, O. Vapalahti, M. Lappalainen, H. R. Kreivi, H. Jarva, S. Kurkela, and E. Kekäläinen, PLoS One 16, e0251661 (2021). https://doi.org/10.1371/journal.pone.0251661LAMPInfluenza A&B virus, HRSV, HPIV-1/-3, HRV, HAdV, MERS-CoV, SARS-CoV-2Nasopharyngeal/oropharyngeal swabs; Lower respiratory specimen30–60 minRapid; Consistent temperature; High amplification efficiency; High sensitivity and specificity; Point-of-care applicationLess sensitive at a low viral load; Complicated primer design41–4441. T. Notomi, H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino, and T. Hase, Nucleic Acids Res. 28, 63e (2000). https://doi.org/10.1093/nar/28.12.e6342. M. M. Parida, S. Sannarangaiah, P. K. Dash, P. V. L. Rao, and K. Morita, Rev. Med. Virol. 18, 407–421 (2008). https://doi.org/10.1002/rmv.59343. J. C. B. Reyes, J. A. A. Solon, and W. L. Rivera, Diagn. Microbiol. Infect. Dis. 79, 337–341 (2014). https://doi.org/10.1016/j.diagmicrobio.2014.03.01644. V. L. Dao Thi, K. Herbst, K. Boerner, M. Meurer, L. P. M. Kremer, D. Kirrmaier, A. Freistaedter, D. Papagiannidis, C. Galmozzi, M. L. Stanifer, S. Boulant, S. Klein, P. Chlanda, D. Khalid, I. Barreto Miranda, P. Schnitzler, H. G. Kräusslich, M. Knop, and S. Anders, Sci. Transl. Med. 12, eabc7075 (2020). https://doi.org/10.1126/scitranslmed.abc7075CRISPR-Cas Nucleic detectionAvian Influenza A virus, PRRSV, SARS-CoV-2Nasopharyngeal/ oropharyngeal swabs; Lower respiratory specimen;40–60 minRelatively rapid; High specificity; Flexible application; Point-of-care applicationLack the capability of multiple detection; Need more clinical validation; Ethical challenges45–5045. J. P. Broughton, X. Deng, G. Yu, C. L. Fasching, V. Servellita, J. Singh, X. Miao, J. A. Streithorst, A. Granados, A. Sotomayor-Gonzalez, K. Zorn, A. Gopez, E. Hsu, W. Gu, S. Miller, C. Y. Pan, H. Guevara, D. A. Wadford, J. S. Chen, and C. Y. Chiu, Nat. Biotechnol. 38, 870–874 (2020). https://doi.org/10.1038/s41587-020-0513-446. J. S. Gootenberg, O. O. Abudayyeh, M. J. Kellner, J. Joung, J. J. Collins, and F. Zhang, Science 360, 439–444 (2018). https://doi.org/10.1126/science.aaq017947. Q. Zhang, B. H. Yin, J. H. Hao, L. J. Ma, Y. Y. Huang, X. Y. Shao, C. Q. Li, Z. Q. Chu, C. Q. Yi, S. H. D. Wong, and M. Yang, Aggregate 4, e195 (2022).48. B. H. Yin, Q. Zhang, X. Y. Xia, C. Q. Li, W. K. H. Ho, J. X. Yan, Y. Y. Huang, H. L. Wu, P. Wang, C. Q. Yi, J. H. Hao, J. F. Wang, H. L. Chen, S. H. D. Wong, and M. Yang, Theranostics 12, 5914 (2022). https://doi.org/10.7150/thno.7581649. H. J. Li, J. Yang, G. F. Wu, Z. Y. Weng, Y. Song, Y. X. Zhang, J. A. Vanegas, L. Avery, Z. Gao, H. Sun, Y. P. Chen, K. D. Dieckhaus, X. Gao, and Y. Zhang, Angew. Chem. Int. Ed. 61, e202203826 (2022). https://doi.org/10.1002/anie.20220382650. J. S. Gootenberg, O. O. Abudayyeh, J. W. Lee, P. Essletzbichler, A. J. Dy, J. Joung, V. Verdine, N. Donghia, N. M. Daringer, C. A. Freije, C. Myhrvold, R. P. Bhattacharyya, J. Livny, A. Regev, E. V. Koonin, D. T. Hung, P. C. Sabeti, J. J. Collins, and F. Zhang, Science 356, 438–442 (2017). https://doi.org/10.1126/science.aam9321Antigens (e.g., spike, envelope, membrane, or nucleocapsid protein)ELISAInfluenza virus, HRSV, HPIV, HMPV, HRV, HCoV, HAdV, HBoVClinical samples2–3hRobust; High sensitivity and specificity; Low cross-reactivityRelatively time-consuming; Require laboratory environment and trained personnel5151. L. Zhang, X. Du, C. Chen, Z. Chen, L. Zhang, Q. Han, X. Xia, Y. Song, and J. Zhang, Viruses 10, 634 (2018). https://doi.org/10.3390/v10110634 and 5252. Y. Chen, K. H. Chan, Y. Kang, H. Chen, H. K. H. Luk, R. W. S. Poon, J. F. W. Chan, K. Y. Yuen, N. Xia, S. K. P. Lau, and P. C. Y. Woo, Emerg. Microbes Infect. 4, 1–5 (2015). https://doi.org/10.1038/emi.2015.26DFAInfluenza A&B virus, HRSV, HPIV1-3, HMPV, HAdV, SARS-CoV-2Nasopharyngeal/ oropharyngeal swabs; Lower respiratory specimen30–60 minRapid; High specificity; Avoid cross-reactionNarrow detection range; Moderate sensitivity; Lack of standardization; Require laboratory environment and trained personnel5353. R. Selvarangan, D. Abel, and M. Hamilton, Diagn. Microbiol. Infect. Dis. 62, 157–161 (2008). https://doi.org/10.1016/j.diagmicrobio.2008.05.005 and 5454. E. E. Thomas and L. E. Book, J. Clin. Microbiol. 29, 632–635 (1991). https://doi.org/10.1128/jcm.29.3.632-635.1991RATInfluenza A&B virus, HRSV, SARS-CoV-2Nasopharyngeal oropharyngeal swabs; Lower respiratory specimen15 minQuick and easy-to-handle; Cost-efficient; Direct reading; Point of care applicationNarrow detection range; Moderate sensitivity and specificity55–5955. M. L. Landry, Clin. Lab Med. 29, 635–647 (2009). https://doi.org/10.1016/j.cll.2009.07.00356. D. F. Welch and C. C. Ginocchio, J. Clin. Microbiol. 48, 22–25 (2010). https://doi.org/10.1128/JCM.02268-0957. T. Peto, D. Affron, B. Afrough et al., EClinicalMedicine 36, 100924 (2021). https://doi.org/10.1016/j.eclinm.2021.10092458. G. C. K. Mak, S. S. Y. Lau, K. K. Y. Wong, N. L. S. Chow, C. S. Lau, E. T. K. Lam, R. C. W. Chan, and D. N. C. Tsang, J. Clin. Virol. 134, 104712 (2021). https://doi.org/10.1016/j.jcv.2020.10471259. World Health Organization [W.H.O.], SARS-CoV-2 Antigen-Detecting Rapid Diagnostic Tests: An Implementation Guide (WHO, 2020).

Comments (0)

No login
gif