Laser induced graphanized microfluidic devices

1650 nmGraphene oxide2222. S. Y. Lin, T. Y. Zhang, Q. Lu, D. Y. Wang, Y. Yang, X. M. Wu, and T. L. Ren, “High-performance graphene-based flexible heater for wearable applications,” RSC Adv. 7, 27001–27006 (2017). https://doi.org/10.1039/C7RA03181E2450 nmGraphene oxide2323. D. Y. Wang, L. Q. Tao, Y. Liu, T. Y. Zhang, Y. Pang, Q. Wang, S. Jiang, Y. Yang, and T. L. Ren, “High performance flexible strain sensor based on self-locked overlapping graphene sheets,” Nanoscale 8, 20090–20095 (2016). https://doi.org/10.1039/C6NR07620C3248 nm (UV)Graphene oxide2424. R. Arul, R. N. Oosterbeek, J. Robertson, G. Xu, J. Jin, and M. C. Simpson, “The mechanism of direct laser writing of graphene features into graphene oxide films involves photoreduction and thermally assisted structural rearrangement,” Carbon 99, 423–431 (2016). https://doi.org/10.1016/j.carbon.2015.12.0384788 nm (CW)Graphene oxide2424. R. Arul, R. N. Oosterbeek, J. Robertson, G. Xu, J. Jin, and M. C. Simpson, “The mechanism of direct laser writing of graphene features into graphene oxide films involves photoreduction and thermally assisted structural rearrangement,” Carbon 99, 423–431 (2016). https://doi.org/10.1016/j.carbon.2015.12.0385800 nm (femtosecond)Graphene oxide2525. M. A. Mohammad, H. Tian, Z. Y. Ju, H. M. Zhao, C. Li, M. A. Mohammad, L. Q. Tao, Y. Pang, X. F. Wang, T. Y. Zhang, Y. Yang, and T. L. Ren, “Tunable graphene oxide reduction and graphene patterning at room temperature on arbitrary substrates,” Carbon 109, 173–181 (2016). https://doi.org/10.1016/j.carbon.2016.08.0056650 nmGraphene oxide2525. M. A. Mohammad, H. Tian, Z. Y. Ju, H. M. Zhao, C. Li, M. A. Mohammad, L. Q. Tao, Y. Pang, X. F. Wang, T. Y. Zhang, Y. Yang, and T. L. Ren, “Tunable graphene oxide reduction and graphene patterning at room temperature on arbitrary substrates,” Carbon 109, 173–181 (2016). https://doi.org/10.1016/j.carbon.2016.08.0057532 nmGraphene oxide2626. H. Fatt Teoh, Y. Tao, E. Soon Tok, G. Wei Ho, and C. Haur Sow, “Direct laser-enabled graphene oxide-reduced graphene oxide layered structures with micropatterning,” J. Appl. Phys. 112, 064309 (2012). https://doi.org/10.1063/1.47527528450 nmPolyimide sheet2727. L. Q. Tao, H. Tian, Y. Liu, Z. Y. Ju, Y. Pang, Y. Q. Chen, D. Y. Wang, X. G. Tian, J. C. Yan, N. Q. Deng, Y. Yang, and T. L. Ren, “An intelligent artificial throat with sound-sensing ability based on laser induced graphene,” Nat. Commun. 8, 1–8 (2017). https://doi.org/10.1038/ncomms14579910.6 m CO2 pulsedPolyimide and Polyetherimde2828. J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E. L. G. Samuel, M. J. Yacaman, B. I. Yakobson, and J. M. Tour, “Laser-induced porous graphene films from commercial polymers,” Nat. Commun. 5, 5–12 (2014). https://doi.org/10.1038/ncomms671410CO2 pulsed LaserPolyimide2929. R. Rahimi, M. Ochoa, W. Yu, and B. Ziaie, “Highly stretchable and sensitive unidirectional strain sensor via laser carbonization,” ACS Appl. Mater. Interfaces 7, 4463–4470 (2015). https://doi.org/10.1021/am509087u11514.5 nm Ar–KrSulfonated poly(ether ether ketone)3030. A. Lamberti, M. Serrapede, G. Ferraro, M. Fontana, F. Perrucci, S. Bianco, A. Chiolerio, and S. Bocchini, “All-SPEEK flexible supercapacitor exploiting laser-induced graphenization,” 2D Mater. 4, 035012 (2017). https://doi.org/10.1088/2053-1583/aa790e1210.6 m CO2 pulsedPaper, coconut, bread, potato, etc.3131. Y. Chyan, R. Ye, Y. Li, S. P. Singh, C. J. Arnusch, and J. M. Tour, “Laser-induced graphene by multiple lasing: Toward electronics on cloth, paper, and food,” ACS Nano 12, 2176–2183 (2018). https://doi.org/10.1021/acsnano.7b08539139.3 m CO2 pulsedTeflon3232. R. Ye, X. Han, D. V. Kosynkin, Y. Li, C. Zhang, B. Jiang, A. A. Martí, and J. M. Tour, “Laser-induced conversion of teflon into fluorinated nanodiamonds or fluorinated graphene,” ACS Nano 12, 1083–1088 (2018). https://doi.org/10.1021/acsnano.7b0587714532 nmMethane3333. J. B. Park, W. Xiong, Y. Gao, M. Qian, Z. Q. Xie, M. Mitchell, Y. S. Zhou, G. H. Han, L. Jiang, and Y. F. Lu, “Fast growth of graphene patterns by laser direct writing,” Appl. Phys. Lett. 98, 123109 (2011). https://doi.org/10.1063/1.35697201510.6 m CO2 pulsedWood3434. R. Ye, Y. Chyan, J. Zhang, Y. Li, X. Han, C. Kittrell, and J. M. Tour, “Laser-induced graphene formation on wood,” Adv. Mater. 29, 1702211 (2017). https://doi.org/10.1002/adma.20170221116CO2Single layer graphene3535. T. Huang, J. Long, M. Zhong, J. Jiang, X. Ye, Z. Lin, and L. Li, “The effects of low power density CO2 laser irradiation on graphene properties,” Appl. Surf. Sci. 273, 502–506 (2013). https://doi.org/10.1016/j.apsusc.2013.02.06917Ultra short pulsed laserGraphene oxide2424. R. Arul, R. N. Oosterbeek, J. Robertson, G. Xu, J. Jin, and M. C. Simpson, “The mechanism of direct laser writing of graphene features into graphene oxide films involves photoreduction and thermally assisted structural rearrangement,” Carbon 99, 423–431 (2016). https://doi.org/10.1016/j.carbon.2015.12.03818Nd:YAG/5 nsSingle layer graphene3636. V. Kiisk, T. Kahro, J. Kozlova, L. Matisen, and H. Alles, “Nanosecond laser treatment of graphene,” Appl. Surf. Sci. 276, 133–137 (2013). https://doi.org/10.1016/j.apsusc.2013.03.04719CWSingle layer graphene3333. J. B. Park, W. Xiong, Y. Gao, M. Qian, Z. Q. Xie, M. Mitchell, Y. S. Zhou, G. H. Han, L. Jiang, and Y. F. Lu, “Fast growth of graphene patterns by laser direct writing,” Appl. Phys. Lett. 98, 123109 (2011). https://doi.org/10.1063/1.3569720

Comments (0)

No login
gif