1.
Huang, C, Wang, Y, Li, X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi:10.1016/S0140-6736(20)30183-5. PMID: 31986264; PMCID: PMC7159299. Erratum in: Lancet. Jan 30, 2020
Google Scholar |
Crossref |
Medline2.
Abdallah, K, Hamed, F, Rahman, N, Salam, S, Mallat, J. Characteristics of critically ill patients infected with COVID-19 in Abu Dhabi, United Arab Emirates. Anaesth Crit Care Pain Med. 2020;39(4):483–485. doi:10.1016/j.accpm.2020.06.014. PMID: 32660852; PMCID: PMC7328597.
Google Scholar |
Crossref |
Medline3.
Atallah, B, Sadik, ZG, Salem, N, et al. The impact of protocol-based high-intensity pharmacological thromboprophylaxis on thrombotic events in critically ill COVID-19 patients. Anaesthesia. 2021;76(3):327–335. doi:10.1111/anae.15300. PMID: 33047335; PMCID: PMC7675553.
Google Scholar |
Crossref |
Medline4.
Salem, N, Atallah, B, El Nekidy, WS, Sadik, ZG, Park, WM, Mallat, J. Thromboelastography findings in critically ill COVID-19 patients. J Thromb Thrombolysis. 2021;51(4):961–965. doi:10.1007/s11239-020-02300-7. PMID: 33011896; PMCID: PMC7532945.
Google Scholar |
Crossref |
Medline5.
Mercuro, NJ, Yen, CF, Shim, DJ, et al. Risk of QT interval prolongation associated with use of hydroxychloroquine with or without concomitant azithromycin among hospitalized patients testing positive for coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(9):1036–1041. doi:10.1001/jamacardio.2020.1834. PMID: 32936252; PMCID: PMC7195692.
Google Scholar |
Crossref |
Medline6.
Chorin, E, Wadhwani, L, Magnani, S, et al. QT interval prolongation and torsade de pointes in patients with COVID-19 treated with hydroxychloroquine/azithromycin. Heart Rhythm. 2020;17(9):1425–1433. doi:10.1016/j.hrthm.2020.05.014. PMID: 32407884; PMCID: PMC7214283.
Google Scholar |
Crossref |
Medline7.
Maraj, I, Hummel, JP, Taoutel, R, et al. Incidence and determinants of QT interval prolongation in COVID-19 patients treated with hydroxychloroquine and azithromycin. J Cardiovasc Electrophysiol. 2020;31(8):1904–1907. doi:10.1111/jce.14594. PMID: 32485061; PMCID: PMC7300464.
Google Scholar |
Crossref |
Medline8.
Ramireddy, A, Chugh, H, Reinier, K, et al. Experience with hydroxychloroquine and azithromycin in the coronavirus disease 2019 pandemic: implications for QT interval monitoring. J Am Heart Assoc. 2020;9(12):e017144. doi:10.1161/JAHA.120.017144. PMID: 32463348; PMCID: PMC7429030.
Google Scholar |
Crossref |
Medline9.
Russo, V, Carbone, A, Mottola, FF, et al. Effect of triple combination therapy with lopinavir-ritonavir, azithromycin, and hydroxychloroquine on QT interval and arrhythmic risk in hospitalized COVID-19 patients. Front Pharmacol. 2020;11:582348. doi:10.3389/fphar.2020.582348. PMID: 33132915; PMCID: PMC7578422.
Google Scholar |
Crossref |
Medline10.
Çap, M, Bilge, Ö, Işık, F, et al. The effect of favipiravir on QTc interval in patients hospitalized with coronavirus disease 2019. J Electrocardiol. 2020;63:115–119. doi:10.1016/j.jelectrocard.2020.10.015. PMID: 33181454; PMCID: PMC7647409.
Google Scholar |
Crossref |
Medline11.
Tisdale, JE, Chung, MK, Campbell, KB; et al. American Heart Association Clinical Pharmacology Committee of the Council on Clinical Cardiology and Council on Cardiovascular and Stroke Nursing. Drug-induced arrhythmias: a scientific statement from the American Heart Association. Circulation. 2020;142(15):e214–e233. doi:10.1161/CIR.0000000000000905. PMID: 32929996.
Google Scholar |
Crossref |
Medline12.
El-Sherif, N, Turitto, G. Torsade de pointes. Curr Opin Cardiol. 2003;18(1):6–13. doi:10.1097/00001573-200301000-00002. PMID: 12496496.
Google Scholar |
Crossref |
Medline13.
Woosley, RL, Romero, K, Heise, CW, et al. Adverse drug event causality analysis (ADECA): a process for evaluating evidence and assigning drugs to risk categories for sudden death. Drug Saf. 2017;40(6):465–474. doi:10.1007/s40264-017-0519-0. PMID: 28275963.
Google Scholar |
Crossref |
Medline14.
Passman, R, Kadish, A. Polymorphic ventricular tachycardia, long Q-T syndrome, and torsades de pointes. Med Clin North Am. 2001;85(2):321–341. doi:10.1016/s0025-7125(05)70318-7. PMID: 11233951.
Google Scholar |
Crossref |
Medline15.
Itoh, H, Crotti, L, Aiba, T, et al. The genetics underlying acquired long QT syndrome: impact for genetic screening. Eur Heart J. 2016;37(18):1456–1464. doi:10.1093/eurheartj/ehv695. PMID: 26715165; PMCID: PMC4914885.
Google Scholar |
Crossref |
Medline16.
Bazett, HC . An analysis of the time-relations of electrocardiograms. Heart. 1920 ; 7:353–370.
Google Scholar17.
Changal, K, Paternite, D, Mack, S, et al. Coronavirus disease 2019 (COVID-19) and QTc prolongation. BMC Cardiovasc Disord. 2021;21(1):158. doi:10.1186/s12872-021-01963-1. PMID: 33784966; PMCID: PMC8007653.
Google Scholar |
Crossref |
Medline18.
Bräuninger, H, Stoffers, B, Fitzek, ADE, et al. Cardiac SARS-CoV-2 infection is associated with pro-inflammatory transcriptomic alterations within the heart [published online October 14, 2021]. Cardiovasc Res. 2021;cvab322. doi:10.1093/cvr/cvab322. PMID: 34647998.
Google Scholar |
Crossref |
Medline19.
Rubin, GA, Desai, AD, Chai, Z, et al. Cardiac corrected QT interval changes among patients treated for COVID-19 infection during the early phase of the pandemic. JAMA Netw Open. 2021;4(4):e216842. doi:10.1001/jamanetworkopen.2021.6842. PMID: 33890991; PMCID: PMC8065381.
Google Scholar |
Crossref |
Medline
Comments (0)