1.
Whelton, PK, Carey, RM, Aronow, WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2018;71(6):e484–594.
Google Scholar2.
Mills, KT, Bundy, JD, Kelly, TN, et al. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation. 2016;134(6):441–450.
Google Scholar |
Crossref |
Medline |
ISI3.
GBD 2017 Risk Factor Collaborators . Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2018;392(10159):1923–1994.
Google Scholar |
Medline4.
GBD 2017 Causes of Death Collaborators . Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1736–1788.
Google Scholar |
Crossref |
Medline5.
Cohn, JN, Ferrari, R, Sharpe, N. Cardiac remodeling-concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol. 2000;35(3):569–582.
Google Scholar |
Crossref |
Medline |
ISI6.
Celic, V, Tadic, M, Suzic-Lazic, J, et al. Two- and three-dimensional speckle tracking analysis of the relation between myocardial deformation and functional capacity in patients with systemic hypertension. Am J Cardiol. 2014;113(5):832-839.
Google Scholar |
Crossref |
Medline7.
Tadic, M, Majstorovic, A, Pencic, B, et al. The impact of high-normal blood pressure on left ventricular mechanics: a three-dimensional and speckle tracking echocardiography study. Int J Cardiovasc Imaging. 2014;3(4):699-711
Google Scholar |
Crossref8.
Devereux, RB, Wachtell, K, Gerdts, E, et al. Prognostic significance of left ventricular mass change during treatment of hypertension. JAMA. 2004;292:2350-2356.
Google Scholar |
Crossref |
Medline |
ISI9.
Muiesan, ML, Salvetti, M, Paini, A, et al. Inappropriate left ventricular mass changes during treatment adversely affects cardiovascular prognosis in hypertensive patients. Hypertension. 2007;49(5):1077-1083.
Google Scholar |
Crossref |
Medline10.
Okin, PM, Hille, DA, Kjeldsen, SE, Dahlöf, B, Devereux, RB. Persistence of left ventricular hypertrophy is associated with increased cardiovascular morbidity and mortality in hypertensive patients with lower achieved systolic pressure during antihypertensive treatment. Blood Press. 2014;23(2):71-80.
Google Scholar |
Crossref |
Medline11.
Antikainen, RL, Peters, R, Beckett, NS, et al. Left ventricular hypertrophy is a predictor of cardiovascular events in elderly hypertensive patients: hypertension in the very elderly trial. J Hypertens. 2016;34(11):2280-2286.
Google Scholar |
Crossref |
Medline12.
Weir, MR, Townsend, RR. What is left ventricular hypertrophy and is there a reason to regress left ventricular hypertrophy. J Clin Hypertens. 2009;11(8):407-410.
Google Scholar |
Crossref13.
Pierdomenico, SD, Cuccurullo, F. Risk reduction after regression of echocardiographic left ventricular hypertrophy in hypertension: a meta-analysis. Am J Hypertens. 2010;23(8):876-881.
Google Scholar |
Crossref |
Medline14.
Williams, B, Mancia, G, Spiering, W, et al. 2018 practice guidelines for the management of arterial hypertension of the European Society of Hypertension and the European Society of Cardiology: ESH/ESC Task Force for the Management of Arterial Hypertension. J Hypertens. 2018;36(10):2284–2309.
Google Scholar |
Crossref |
Medline15.
James, PA, Oparil, S, Carter, BL, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311(5):507–520.
Google Scholar |
Crossref |
Medline |
ISI16.
ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group . The antihypertensive and lipid-lowering treatment to prevent heart attack trial. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). JAMA. 2002;288(23):2981–2997.
Google Scholar |
Crossref |
Medline |
ISI17.
Suchard, MA, Schuemie, MJ, Krumholz, HM, et al. Comprehensive comparative effectiveness and safety of first-line antihypertensive drug classes: a systematic, multinational, large-scale analysis. Lancet. 2019;394(10211):1816–1826.
Google Scholar |
Crossref |
Medline18.
Herman, LL, Bashir, K. Hydrochlorothiazide. In: StatPearls [Internet]. StatPearls Publishing; 2021. PMID: 28613517.
Google Scholar19.
Tamargo, J, Segura, J, Ruilope, LM. Diuretics in the treatment of hypertension. Part 1: thiazide and thiazide-like diuretics. Expert Opin Pharmacother. 2014;15(4):527–547.
Google Scholar |
Crossref |
Medline20.
Pickkers, P, Hughes, AD, Russel, FG, et al. Thiazide-induced vasodilation in humans is mediated by potassium channel activation. Hypertension. 1998;32:1071–1076.
Google Scholar |
Crossref |
Medline |
ISI21.
Calder, JA, Schachter, M, Sever, PS. Potassium channel opening properties of thiazide diuretics in isolated guinea pig resistance arteries. J Cardiovasc Pharmacol. 1994;24:158–164.
Google Scholar |
Crossref |
Medline22.
Pickkers, P, Garcha, RS, Schachter, M, et al. Inhibition of carbonic anhydrase accounts for the direct vascular effects of hydrochlorothiazide. Hypertension. 1999;33(4):1043–1048.
Google Scholar |
Crossref |
Medline23.
Colas, B, Slama, M, Collin, T, et al. Mechanisms of methyclothiazide-induced inhibition of contractile responses in rat aorta. Eur J Pharmacol. 2000;408(1):63–67.
Google Scholar |
Crossref |
Medline24.
Calder, JA, Schachter, M, Sever, PS. Potassium channel opening properties of thiazide diuretics in isolated guinea pig resistance arteries. J Cardiovasc Pharmacol. 1994;24(1):158–164.
Google Scholar |
Crossref |
Medline25.
Zhu, Z, Zhu, S, Liu, D, et al. Thiazide-like diuretics attenuate agonist induced vasoconstriction by calcium desensitization linked to Rho kinase. Hypertension. 2005;45(2):233–239.
Google Scholar |
Crossref |
Medline26.
Araos, P, Mondaca, D, Jalil, JE, et al. Diuretics prevent Rho-kinase activation and expression of profibrotic/oxidative genes in the hypertensive aortic wall. Ther Adv Cardiovasc Dis. 2016;10(6):338–347.
Google Scholar |
SAGE Journals27.
Strassheim, D, Gerasimovskaya, E, Irwin, D, Dempsey, EC, Stenmark, K, Karoor, V. RhoGTPase in vascular disease. Cells. 2019;8(6):551. doi:10.3390/cells8060551 PMID: 31174369; PMCID: PMC6627336
Google Scholar |
Crossref28.
Shimokawa, H, Sunamura, S, Satoh, K. RhoA/Rho-kinase in the cardiovascular system. Circ Res. 2016;118(2):352–366.
Google Scholar |
Crossref |
Medline |
ISI29.
Masumoto, A, Hirooka, Y, Shimokawa, H, Hironaga, K, Setoguchi, S, Takeshita, A. Possible involvement of Rho-kinase in the pathogenesis of hypertension in humans. Hypertension. 2001;38(6):1307–1310.
Google Scholar |
Crossref |
Medline30.
Soga, J, Noma, K, Hata, T, et al. Rho-associated kinase activity, endothelial function, and cardiovascular risk factors. Arterioscler Thromb Vasc Biol. 2011;31(10):2353–2359.
Google Scholar |
Crossref |
Medline31.
Smith, CJ, Santhanam, L, Alexander, LM. Rho-kinase activity and cutaneous vasoconstriction is upregulated in essential hypertensive humans. Microvasc Res. 2013;87:58–64.
Google Scholar |
Crossref |
Medline32.
Gabrielli, L, Winter, JL, Godoy, I, et al. Increased Rho-kinase activity in hypertensive patients with left ventricular hypertrophy. Am J Hypertens. 2014;27(6):838–845.
Google Scholar |
Crossref |
Medline33.
Ocaranza, MP, Fierro, C, Jalil, JE, et al. Rho kinase activation in circulating leukocytes is related to hypertensive myocardial remodeling. Clin Sci (Lond). 2018;132(16):1837–1853.
Google Scholar |
Crossref |
Medline34.
Uehata, M, Ishizaki, T, Satoh, H, et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature. 1997;389(6654):990–994.
Google Scholar |
Crossref |
Medline35.
Ocaranza, MP, Rivera, P, Novoa, U, et al. Rho kinase inhibition activates the homologous angiotensin-converting enzyme-angiotensin-(1-9) axis in experimental hypertension. J Hypertens. 2011;29(4):706–715.
Google Scholar |
Crossref |
Medline36.
Dhaliwal, JS, Casey, DB, Greco, AJ, et al. Rho kinase and Ca2+ entry mediate increased pulmonary and systemic vascular resistance in L-NAME-treated rats. Am J Physiol Lung Cell Mol Physiol. 2007;293(5):L1306–L1313.
Google Scholar |
Crossref |
Medline37.
Olgar, Y, Celen, MC, Yamasan, BE, Ozturk, N, Turan, B, Ozdemir, S. Rho-kinase inhibition reverses impaired Ca2+ handling and associated left ventricular dysfunction in pressure overload-induced cardiac hypertrophy. Cell Calcium. 2017;67:81–90.
Google Scholar |
Crossref |
Medline38.
Tsai, SH, Lu, G, Xu, X, Ren, Y, Hein, TW, Kuo, L. Enhanced endothelin-1/Rho-kinase signalling and coronary microvascular dysfunction in hypertensive myocardial hypertrophy. Cardiovasc Res. 2017;113(11):1329–1337.
Google Scholar |
Crossref |
Medline39.
Shimizu, T, Liao, JK. Rho kinases and cardiac remodeling. Circ J. 2016;80(7):1491–1498.
Google Scholar |
Crossref |
Medline40.
Ferreira, JP, Rossignol, P, Pizard, A, et al. Potential spironolactone effects on collagen metabolism biomarkers in patients with uncontrolled blood pressure. Heart. 2019;105(4):307–314.
Google Scholar |
Crossref |
Medline41.
Manolis, AA, Manolis, TA, Melita, H, Manolis, AS. Eplerenone versus spironolactone in resistant hypertension: an efficacy and/or cost or just a men’s issue? Curr Hypertens Rep. 2019;21(3):22. doi:10.1007/s11906-019-0924-0
Google Scholar |
Crossref |
Medline42.
Morais, GB, Viana, DA, Silva, FMO, et al. Polarization microscopy as a tool for quantitative evaluation of collagen using picrosirius red in different stages of CKD in cats. Microsc Res Tech. 2017;80(5):543–550.
Google Scholar |
Crossref |
Medline43.
Fierro, C, Novoa, U, González, V, Ocaranza, MP, Jalil, JE. Simultaneous Rho kinase inhibition in circulating leukocytes and in cardiovascular tissue in rats with high angiotensin converting enzyme levels. Int J Cardiol. 2016;215:309–317.
Google Scholar |
Crossref |
Medline44.
Masuda, K, Taenaka, H, Asanuma, T, Nakatani, S. Comparison of the effects of angiotensin II receptor antagonist monotherapy and combination therapy with a diuretic on cardiac function in spontaneously hypertensive rats. J Echocardiogr. 2012 Dec;10(4):125–131.
Google Scholar |
Crossref |
Medline45.
Yamada, Y, Tsuboi, K, Hattori, T, et al. Mechanism underlying the efficacy of combination therapy with losartan and hydrochlorothiazide in rats with salt-sensitive hypertension. Hypertens Res. 2011;34(7):809–816.
Google Scholar |
Crossref |
Medline46.
Contard, F, Glukhova, M, Marotte, F, et al. Diuretic effects on cardiac hypertrophy in the stroke prone spontaneously hypertensive rat. Cardiovasc Res. 1993;27(3):429–434.
Google Scholar |
Crossref |
Medline47.
Jalil, JE, Doering, CW, Janicki, JS, Pick, R, Shroff, SG, Weber, KT. Fibrillar collagen and myocardial stiffness in the intact hypertrophied rat left ventricle. Circ Res. 1989;64(6):1041–1050.
Google Scholar |
Crossref |
Comments (0)