Ackerman, P. L., Beier, M. E., Boyle, M. D. (2002). Individual differences in working memory within a nomological network of cognitive and perceptual speed abilities. Journal of Experimental Psychology: General, 131(4), 567–589.
https://doi.org/10.1037/0096-3445.131.4.567 Google Scholar |
Crossref
Ackerman, P. L., Beier, M. E., Boyle, M. O. (2005). Working memory and intelligence: The same or different constructs? Psychological Bulletin, 131(1), 30–60.
https://doi.org/10.1037/0033-2909.131.1.30 Google Scholar |
Crossref
Baddeley, A. D. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829–839.
https://doi.org/10.1038/nrn1201 Google Scholar |
Crossref
Baddeley, A. D., Hitch, G. (1974). Working memory. Psychology of Learning and Motivation, 8, 47–89.
https://doi.org/10.1016/S0079-7421(08)60452-1 Google Scholar |
Crossref
Ball, B. H. (2015). Cognitive control processes underlying continuous and transient monitoring processes in event-based prospective memory. (Doctoral dissertation, Arizona State University).
https://repository.asu.edu/attachments/150526/content/Ball_asu_0010E_14793.pdf Google Scholar
Belletier, C., Normand, A., Camos, V., Barrouillet, P., Huguet, P. (2019). Choking under experimenter’s presence: Impact on proactive control and practical consequences for psychological science. Cognition, 189, 60–64.
https://doi.org/10.1016/j.cognition.2019.03.018 Google Scholar |
Crossref
Boudewyn, M. A., Long, D. L., Traxler, M. J., Lesh, T. A., Dave, S., Mangun, G. R., Carter, C. S., Swaab, T. Y. (2015). Sensitivity to referential ambiguity in discourse: The role of attention, working memory, and verbal ability. Journal of Cognitive Neuroscience, 27(12), 2309–2323.
https://doi.org/10.1162/jocn_a_00837 Google Scholar |
Crossref
Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16, 106–113.
http://doi.org/10.1016/j.tics.2011.12.010 Google Scholar |
Crossref
Braver, T. S., Gray, J. R., Burgess, G. C. (2007). Explaining the many varieties of working memory variation: Dual mechanisms of cognitive control. In Conway, A. R. A., Jarrold, C., Kane, M. J., Towse, J. N., Miyake, A. (Eds.), Variation in working memory (pp. 76–106). Oxford University Press.
Google Scholar
Braver, T. S., Paxton, J. L., Locke, H. S., Barch, D. M. (2009). Flexible neural mechanisms of cognitive control within human prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 106(18), 7351–7356.
https://doi.org/10.1073/pnas.0808187106 Google Scholar |
Crossref
Braver, T. S., Satpute, A. B., Rush, B. K., Racine, C. A., Barch, D. M. (2005). Context processing and context maintenance in healthy aging and early stage dementia of the Alzheimer’s type. Psychology and Aging, 20(1), 33–46.
https://doi.org/10.1037/0882-7974.20.1.33 Google Scholar |
Crossref
Conway, A. R. A., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., Engle, R. W. (2005). Working memory span tasks: A methodological review and user’s guide. Psychonomic Bulletin & Review, 12(5), 769–786.
https://doi.org/10.3758/BF03196772 Google Scholar |
Crossref |
Medline |
ISI
Cooper, S. R., Gonthier, C., Barch, D. M., Braver, T. S. (2017). The role of psychometrics in individual differences research in cognition: A case study of the AX-CPT. Frontiers in Psychology, 8, Article 1482.
https://doi.org/10.3389/fpsyg.2017.01482 Google Scholar |
Crossref
Cowan, N. (1988). Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychological Bulletin, 104(2), 163–191.
https://doi.org/10.1037/0033-2909.104.2.163 Google Scholar |
Crossref
Cronbach, L. J. (1957). The two disciplines of scientific psychology. American Psychologist, 12(11), 671–684.
https://doi.org/10.1037/h0043943 Google Scholar |
Crossref
Daneman, M., Merikle, P. M. (1996). Working memory and language comprehension: A meta-analysis. Psychonomic Bulletin & Review, 3(4), 422–433.
https://doi.org/10.3758/BF03214546 Google Scholar |
Crossref
Engle, R. W., Kane, M. J. (2004). Executive attention, working memory capacity, and a two-factor theory of cognitive control. Psychology of Learning and Motivation, 44, 145–199.
https://doi.org/10.1016/S0079-7421(03)44005-X Google Scholar |
Crossref
Engle, R. W., Kane, M. J., Tuholski, S. W. (1999a). Individual differences in working memory capacity and what they tell us about controlled attention, general fluid intelligence, and functions of the prefrontal cortex. In Miyake, A., Shah, P. (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 102–134). Cambridge University Press.
Google Scholar |
Crossref
Fry, A. F., Hale, S. (2000). Relationships among processing speed, working memory and fluid intelligence in children. Biological Psychology, 54(1–3), 1–34.
https://doi.org/10.1016/s0301-0511(00)00051-x Google Scholar |
Crossref
Gonthier, C., Macnamara, B. N., Chow, M., Conway, A. R. A., Braver, T. S. (2016). Inducing proactive control shifts in the AX-CPT. Frontiers in Psychology, 7, Article 1822.
https://doi.org/10.3389/fpsyg.2016.01822 Google Scholar |
Crossref
Gonthier, C., Thomassin, N., Roulin, J.-L. (2016). The composite complex span: French validation of a short working memory task. Behavior Research Methods, 48, 233–242.
http://doi.org/10.3758/s13428-015-0566-3 Google Scholar |
Crossref
Gonthier, C., Zira, M., Colé, P., Blaye, A. (2019). Evidencing the developmental shift from reactive to proactive control in early childhood and its relationship to working memory. Journal of Experimental Child Psychology, 177, 1–16.
https://doi.org/10.1016/j.jecp.2018.07.001 Google Scholar |
Crossref
Hedge, C., Powell, G., Sumner, P. (2018). The reliability paradox: Why robust cognitive tasks do not produce reliable individual differences. Behavior Research Methods, 50(3), 1166–1186.
Google Scholar |
Crossref
Henderson, D., Poppe, A. B., Barch, D. M., Carter, C. S., Gold, J. M., Ragland, J. D., Silverstein, S. M., Strauss, M. E., MacDonald, A. W.. (2012). Optimization of a goal maintenance task for use in clinical applications. Schizophrenia Bulletin, 38(1), 104–113.
https://doi.org/10.1093/schbul/sbr172 Google Scholar |
Crossref
Kane, M. J., Engle, R. W. (2003). Working-memory capacity and the control of attention: The contributions of goal neglect, response competition, and task set to Stroop interference. Journal of Experimental Psychology: General, 132, 47–70.
https://doi.org/10.1037/0096-3445.132.1.47 Google Scholar |
Crossref
Kovacs, K., Conway, A. R. A. (2016). Process overlap theory: A unified account of the general factor of intelligence. Psychological Inquiry, 27(3), 151–177.
https://doi.org/10.1080/1047840X.2016.1153946 Google Scholar |
Crossref
MacDonald, A. W., Goghari, V. M., Hicks, B. M., Flory, J. D., Carter, C. S., Manuck, S. B. (2005). A convergent-divergent approach to context processing, general intellectual functioning, and the genetic liability to schizophrenia. Neuropsychology, 19(6), 814–821.
https://doi.org/10.1037/0894-4105.19.6.814 Google Scholar |
Crossref
McDonald, R. P. (1978). Generalizability in factorable domains: “Domain validity and generalizability.” Educational and Psychological Measurement, 38(1), 75–79.
https://doi.org/10.1177/001316447803800111 Google Scholar |
SAGE Journals
Oberauer, K., Süß, H. M., Schulze, R., Wilhelm, O., Wittmann, W. W. (2000). Working memory capacity–facets of a cognitive ability construct. Personality and Individual Differences, 29(6), 1017–1045.
Google Scholar |
Crossref
Parsons, S., Kruijt, A.-W., Fox, E. (2019). Psychological science needs a standard practice of reporting the reliability of cognitive-behavioral measurements. Advances in Methods and Practices in Psychological Science, 2(4), 378–395.
https://doi.org/10.1177/2515245919879695 Google Scholar |
SAGE Journals
Paxton, J. L., Barch, D. M., Racine, C. A., Braver, T. S. (2008). Cognitive control, goal maintenance, and prefrontal function in healthy aging. Cerebral Cortex, 18(5), 1010–1028.
https://doi.org/10.1093/cercor/bhm135 Google Scholar |
Crossref
Paxton, J. L., Barch, D. M., Storandt, M., Braver, T. S. (2006). Effects of environmental support and strategy training on older adults’ use of context. Psychology and Aging, 21(3), 499–509.
https://doi.org/10.1037/0882-7974.21.3.499 Google Scholar |
Crossref
Redick, T. S. (2014). Cognitive control in context: Working memory capacity and proactive control. Acta Psychologica, 145, 1–9.
https://doi.org/10.1016/j.actpsy.2013.10.010 Google Scholar |
Crossref
Redick, T. S., Broadway, J. M., Meier, M. E., Kuriakose, P. S., Unsworth, N., Kane, M. J., Engle, R. W. (2012). Measuring working memory capacity with automated complex span tasks. European Journal of Psychological Assessment, 28(3), 164–171.
https://doi.org/10.1027/1015-5759/a000123 Google Scholar |
Crossref
Redick, T. S., Engle, R. W. (2011). Integrating working memory capacity and context-processing views of cognitive control. Quarterly Journal of Experimental Psychology, 64(6), 1048–1055.
https://doi.org/10.1080/17470218.2011.577226 Google Scholar |
SAGE Journals
Revelle, W., Zinbarg, R. E. (2009). Coefficients alpha, beta, omega, and the glb: Comments on Sijtsma. Psychometrika, 74(1), 145–154.
https://doi.org/10.1007/s11336-008-9102-z Google Scholar |
Crossref
Richmond, L. L., Redick, T. S., Braver, T. S. (2015). Remembering to prepare: The benefits (and costs) of high working memory capacity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(6), 1764–1777.
https://doi.org/10.1037/xlm0000122 Google Scholar |
Crossref
Schelble, J. L., Therriault, D. J., Miller, M. D. (2012). Classifying retrieval strategies as a function of working memory. Memory & Cognition, 40, 218–230.
https://doi.org/10.3758/s13421-011-0149-1 Google Scholar |
Crossref
Shah, P., Miyake, A. (1999). Models of working memory: An introduction. In Miyake, A., Shah, P. (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 1–27). Cambridge University Press.
https://doi.org/10.1017/CBO9781139174909 Google Scholar |
Crossref
Simmering, V. R., Perone, S. (2013). Working memory capacity as a dynamic process. Frontiers in Psychology, 3, Article 567.
https://doi.org/10.3389/fpsyg.2012.00567 Google Scholar |
Crossref
Stawarczyk, D., Majerus, S., Catale, C., D’Argembeau, A. (2014). Relationships between mind-wandering and attentional control abilities in young adults and adolescents. Acta Psychologica, 148, 25–36.
https://doi.org/10.1016/j.actpsy.2014.01.007 Google Scholar |
Crossref
Thomassin, N., Gonthier, C., Guerraz, M., Roulin, J.-L. (2015). The hard fall effect: High working memory capacity leads to a higher, but less robust short-term memory performance. Experimental Psychology, 62(2), 89–97.
https://doi.org/10.1027/1618-3169/a000276 Google Scholar |
Crossref
Troller-Renfree, S. V., Buzzell, G. A., Fox, N. A. (2020). Changes in working memory influence the transition from reactive to proactive cognitive control during childhood. Developmental Science, 23, Article e12959.
https://doi.org/10.1111/desc.12959 Google Scholar |
Crossref
Unsworth, N., Engle, R. W. (2007). The nature of individual differences in working memory capacity: Active maintenance in primary memory and controlled search from secondary memory. Psychological Review, 114(1), 104–132.
https://doi.org/10.1037/0033-295X.114.1.104 Google Scholar |
Crossref
Unsworth, N., Fukuda, K., Awh, E., Vogel, E. K. (2014). Working memory and fluid intelligence: Capacity, attention control, and secondary memory retrieval. Cognitive Psychology, 71, 1–26.
https://doi.org/10.1016/j.cogpsych.2014.01.003 Google Scholar |
Crossref
Unsworth, N., Heitz, R. P., Schrock, J. C., Engle, R. W. (2005). An automated version of the operation span task. Behavior Research Methods, 37(3), 498–505.
https://doi.org/10.3758/bf03192720 Google Scholar |
Crossref
Wiemers, E. A., Redick, T. S. (2018). Working memory capacity and intra-individual variability of proactive control. Acta Psychologica, 182, 21–31.
https://doi.org/10.1016/j.actpsy.2017.11.002 Google Scholar |
Crossref
Wiley, J., Jarosz, A. F. (2012). How working memory capacity affects problem solving. In Ross, B. H. (Ed.), The psychology of learning and motivation (Vol. 56, pp. 185–227). Elsevier Academic Press.
https://doi.org/10.1016/B978-0-12-394393-4.00006-6 Google Scholar |
Crossref
Comments (0)