Uraemic Cardiomyopathy: A Review of Current Literature

1. Wang, X, Shapiro, JI. Evolving concepts in the pathogenesis of uraemic cardiomyopathy. Nat Rev Nephrol. 2019;15(3):159-175.
Google Scholar | Crossref | Medline2. Roberts, MA, Polkinghorne, KR, McDonald, SP, Ierino, FL. Secular trends in cardiovascular mortality rates of patients receiving dialysis compared with the general population. Am J Kidney Dis. 2011;58(1):64-72.
Google Scholar | Crossref | Medline3. Alhaj, E, Alhaj, N, Rahman, I, Niazi, TO, Berkowitz, R, Klapholz, M. Uremic cardiomyopathy: an underdiagnosed disease. Congest Heart Failure. 2013;19(4):E40-E50.
Google Scholar | Crossref | Medline4. Grollier, G, Hurault, DLB, Bonnet, H, Scanu, P, Potier, J. So-called uremic heart diseases. Arch Mal Coeur Vaiss. 1990;83(3):401.
Google Scholar | Medline5. de Albuquerque Suassuna, PG, Sanders-Pinheiro, H, de Paula, RB. Uremic cardiomyopathy: a new piece in the chronic kidney disease-mineral and bone disorder puzzle. Front Med. 2018;5:206.
Google Scholar | Crossref6. Rostand, SG, Gretes, JC, Kirk, KA, Rutsky, EA, Andreoli, TE. Ischemic heart disease in patients with uremia undergoing maintenance hemodialysis. Kidney Int. 1979;16(5):600-611.
Google Scholar | Crossref | Medline7. Rostand, SG, Kirk, KA, Rutsky, EA. Dialysis-associated ischemic heart disease: insights from coronary angiography. Kidney Int. 1984;25(4):653-659.
Google Scholar | Crossref | Medline8. Clyne, N, Lins, L-E, Pehrsson, SK. Occurrence and significance of heart disease in uraemia: an autopsy study. Scand J Urol Nephrol. 1986;20(4):307-311.
Google Scholar | Crossref | Medline9. Parfrey, PS, Foley, RN. The clinical epidemiology of cardiac disease in chronic renal failure. J Am Soc Nephrol. 1999;10(7):1606-1615.
Google Scholar | Medline | ISI10. Radhakrishnan, A, Pickup, LC, Price, AM, Law, JP, Edwards, NC, Steeds, RP, et al. Coronary microvascular dysfunction: a key step in the development of uraemic cardiomyopathy? Heart. 2019;105(17):1302-1309.
Google Scholar | Crossref | Medline11. Grabner, A, Faul, C. The role of FGF23 and klotho in uremic cardiomyopathy. Curr Opin Nephrol Hypertens. 2016;25(4):314.
Google Scholar | Crossref | Medline12. Lisowska-Myjak, B . Uremic toxins and their effects on multiple organ systems. Nephron Clin Pract. 2014;128:303-311
Google Scholar | Crossref | Medline13. Vlagopoulos, PT, Sarnak, MJ. Traditional and nontraditional cardiovascular risk factors in chronic kidney disease. Med Clin North Am. 2005;89:587-661
Google Scholar | Crossref | Medline14. Foley, RN, Parfrey, PS Cardiac disease in chronic uremia: clinical outcome and risk factors. Adv Ren Replac Ther. 1997;1:234-248.
Google Scholar | Crossref15. Brønnum, H, Kalluri, R. Cardiac fibrosis: cellular and molecular determinants. In: Muscle. Elsevier Inc.; 2012:389-404.
Google Scholar16. Heinzel, FR, Hohendanner, F, Jin, G, Sedej, S, Edelmann, F. Myocardial hypertrophy and its role in heart failure with preserved ejection fraction. J Appl Physiol. 2015;119(10):1233-1242.
Google Scholar | Crossref | Medline17. Graham-Brown, MP, Patel, A, Stensel, DJ, March, DS, Marsh, A-M, McAdam, J, et al. Imaging of myocardial fibrosis in patients with end-stage renal disease: current limitations and future possibilities. BioMed Res Int. 2017;2017:5453606.
Google Scholar | Crossref | Medline18. Winchester, JF, Audia, PF, eds. Unresolved Issues in Dialysis: Extracorporeal Strategies for the Removal of Middle Molecules. Seminars in Dialysis. Wiley Online Library; 2006.
Google Scholar19. Lekawanvijit, S . Cardiotoxicity of uremic toxins: a driver of cardiorenal syndrome. Toxins. 2018;10(9):352.
Google Scholar | Crossref20. Bagrov, AY, Shapiro, JI, Fedorova, OV. Endogenous cardiotonic steroids: physiology, pharmacology, and novel therapeutic targets. Pharmacol Rev. 2009;61(1):9-38.
Google Scholar | Crossref | Medline21. Lingrel, JB, Van Huysse, J, O’Brien, W, Jewell-Motz, E, Askew, R, Schultheis, P. Structure-function studies of the Na, K-ATPase. Kidney Int Suppl. 1994;44:S32-S39.
Google Scholar | Medline22. Fedorova, OV, Talan, MI, Agalakova, NI, Lakatta, EG, Bagrov, AY. Coordinated shifts in Na/K-ATPase isoforms and their endogenous ligands during cardiac hypertrophy and failure in NaCl-sensitive hypertension. J Hypertens. 2004;22(2):389-397.
Google Scholar | Crossref | Medline23. Kennedy, D, Malhotra, D, Shapiro, J. Molecular insights into uremic cardiomyopathy: cardiotonic steroids and Na/K ATPase signaling. Cell Mol Biol. 2006;52(8):3-14.
Google Scholar | Medline | ISI24. Dubin, RF, Guajardo, I, Ayer, A, et al. Associations of macro- and microvascular endothelial dysfunction with subclinical ventricular dysfunction in end-stage renal disease. Hypertension. 2016;68(4):913-920.
Google Scholar | Crossref | Medline25. Bhandari, S . Risk factors and metabolic mechanisms in the pathogenesis of uraemic cardiac disease. Front Biosci. 2011;16:1364-1387.
Google Scholar | Crossref | Medline26. Foley, RN, Parfrey, PS, Harnett, JD, Kent, GM, Murray, DC, Barre, PE. The impact of anemia on cardiomyopathy, morbidity, and mortality in end-stage renal disease. Am J Kidney Dis. 1996;28(1):53-61.
Google Scholar | Crossref | Medline27. Hordijk, P, Vervloet, M. Most exposed: the endothelium in chronic kidney disease. Nephrol Dial Transplant. 2019;35(9):1478-1487.
Google Scholar28. Ioannou, K, Stel, VS, Dounousi, E, Jager, KJ, Papagianni, A, Pappas, K, et al. Inflammation, endothelial dysfunction and increased left ventricular mass in chronic kidney disease (CKD) patients: a longitudinal study. PLoS One. 2015;10(9):e0138461.
Google Scholar | Crossref | Medline29. Bellinghieri, G, Santoro, D, Calvani, M, Mallamace, A, Savica, V. Carnitine and hemodialysis. Am J Kidney Dis. 2003;41(3):S116-S120.
Google Scholar | Crossref | Medline30. Reddy, V, Bhandari, S, Seymour, A-ML. Myocardial function, energy provision, and carnitine deficiency in experimental uremia. J Am Soc Nephrol. 2007;18(1):84-92.
Google Scholar | Crossref | Medline31. Kaneko, M, Fukasawa, H, Ishibuchi, K, Niwa, H, Yasuda, H, Furuya, R. L-carnitine improved the cardiac function via the effect on myocardial fatty acid metabolism in a hemodialysis patient. Intern Med. 2019;57(24):3593-3596.
Google Scholar | Crossref32. Shinohara, K, Shoji, T, Emoto, M, et al. Insulin resistance as an independent predictor of cardiovascular mortality in patients with end-stage renal disease. J Am Soc Nephrol. 2002;13(7):1894-1900.
Google Scholar | Crossref | Medline33. Becker, B, Kronenberg, F, Kielstein, JT, et al. Renal insulin resistance syndrome, adiponectin and cardiovascular events in patients with kidney disease: the mild and moderate kidney disease study. J Am Soc Nephrol. 2005;16(4):1091-1098.
Google Scholar | Crossref | Medline34. Dogra, G, Irish, A, Chan, D, Watts, G. Resistance, inflammation, and blood pressure determine vascular dysfunction in CKD. Am J Kidney Dis. 2006;48(6):926-934.
Google Scholar | Crossref | Medline35. Nishimura, M, Murase, M, Hashimoto, T, et al. Insulin resistance and impaired myocardial fatty acid metabolism in dialysis patients with normal coronary arteries. Kidney Int. 2006;69(3):553-539.
Google Scholar | Crossref | Medline36. Takenaka, T, Kanno, Y, Ohno, Y, Suzuki, H. Key role of insulin resistance in vascular injury among hemodialysis patients. Metabolism. 2007;56(2):153-159.
Google Scholar | Crossref | Medline37. Thomas, SS, Zhang, L, Mitch, WE. Molecular mechanisms of insulin resistance in chronic kidney disease. Kidney Int. 2015;88(6):1233-1239.
Google Scholar | Crossref | Medline38. Semple, D, Smith, K, Bhandari, S, Seymour, A-ML. Uremic cardiomyopathy and insulin resistance: a critical role for akt? J Am Soc Nephrol. 2011;22(2):207-215.
Google Scholar | Crossref | Medline39. Matsui, T, Rosenzweig, A. Convergent signal transduction pathways controlling cardiomyocyte survival and function: the role of PI 3-kinase and Akt. J Mol Cell Cardiol. 2005;38(1):63-71.
Google Scholar | Crossref | Medline40. Kato, MF, Shibata, R, Obata, K, et al. Pioglitazone attenuates cardiac hypertrophy in rats with salt-sensitive hypertension: role of activation of AMP-activated protein kinase and inhibition of Akt. J Hypertens. 2008;26(8):1669-1676.
Google Scholar | Crossref | Medline41. Siedlecki, AM, Jin, X, Muslin, AJ. Uremic cardiac hypertrophy is reversed by rapamycin but not by lowering of blood pressure. Kidney Int. 2009;75(8):800-808.
Google Scholar | Crossref | Medline42. Isakova, T, Xie, H, Yang, W, et al. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA. 2011;305(23):2432-2439.
Google Scholar | Crossref | Medline43. Ritter, CS, Slatopolsky, E. Phosphate toxicity in CKD: the killer among us. Clin J Am Soc Nephrol. 2016;11(6):1088-1100.
Google Scholar | Crossref | Medline44. Otani-Takei, N, Masuda, T, Akimoto, T, et al. Association between serum soluble klotho levels and mortality in chronic hemodialysis patients. Int J Endocrinol. 2015;2015:406269.
Google Scholar | Crossref | Medline45. London, GM, Fabiani, F, Marchais, SJ, et al. Uremic cardiomyopathy: an inadequate left ventricular hypertrophy. Kidney Int. 1987;31(4):973-980.
Google Scholar | Crossref | Medline | ISI46. Walker, M, Fleischer, J, Di Tullio, M, et al. Cardiac structure and diastolic function in mild primary hyperparathyroidism. J Clin Endocrinol Metabol. 2010;95(5):2172-2179.
Google Scholar | Crossref | Medline47. Segall, L, Nistor, I, Covic, A. Heart failure in patients with chronic kidney disease: a systematic integrative review. BioMed Res Int. 2014;2014:937398.
Google Scholar | Crossref | Medline48. Wang, AY-M, Lam, CW-K, Sanderson, JE, et al. Serum 25-hydroxyvitamin D status and cardiovascular outcomes in chronic peritoneal dialysis patients: a 3-y prospective cohort study. Am J Clin Nutr. 2008;87(6):1631-1638.
Google Scholar | Crossref | Medline49. Stróżecki, P, Adamowicz, A, Nartowicz, E, Odrowąż-Sypniewska, G, Włodarczyk, Z, Manitius, J. Parathormon, calcium, phosphorus, and left ventricular structure and function in normotensive hemodialysis patients. Renal Failure. 2001;23(1):115-126.
Google Scholar | Crossref | Medline50. Chue, CD, Edwards, NC, Moody, WE, Steeds, RP, Townend, JN, Ferro, CJ. Serum phosphate is associated with left ventricular mass in patients with chronic kidney disease: a cardiac magnetic resonance study. Heart. 2012;98(3):219-224.
Google Scholar | Crossref | Medline51. Galetta, F, Cupisti, A, Franzoni, F, et al. Left ventricular function and calcium phosphate plasma levels in uraemic patients. J Int Med. 2005;258(4):378-384.
Google Scholar | Crossref | Medline52. Achinger, SG, Ayus, JC. Left ventricular hypertrophy: is hyperphosphatemia among dialysis patients a risk factor? J Am Soc Nephrol. 2006;17(12 suppl 3):S255-S261.

Comments (0)

No login
gif