1.
Bouchery, EE, Harwood, HJ, Sacks, JJ, Simon, CJ, Brewer, RD. Economic costs of excessive alcohol consumption in the U.S., 2006. Am J Prev Med. 2011;41:516-524.
Google Scholar |
Crossref |
Medline2.
Sacks, JJ, Gonzales, KR, Bouchery, EE, Tomedi, LE, Brewer, RD. 2010 national and state costs of excessive alcohol consumption. Am J Prev Med. 2015;49:e73-e79.
Google Scholar |
Crossref |
Medline3.
Koob, GF, Volkow, ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35:217-238.
Google Scholar |
Crossref |
Medline4.
Brodie, MS, Pesold, C, Appel, SB. Ethanol directly excites dopaminergic ventral tegmental area reward neurons. Alcohol Clin Exp Res. 1999;23:1848-1852.
Google Scholar |
Crossref |
Medline5.
Brodie, MS, Shefner, SA, Dunwiddie, TV. Ethanol increases the firing rate of dopamine neurons of the rat ventral tegmental area in vitro. Brain Res. 1990;508:65-69.
Google Scholar |
Crossref |
Medline6.
Gessa, GL, Muntoni, F, Collu, M, Vargiu, L, Mereu, G. Low doses of ethanol activate dopaminergic neurons in the ventral tegmental area. Brain Res. 1985;348:201-203.
Google Scholar |
Crossref |
Medline7.
Morikawa, H, Morrisett, RA. Ethanol action on dopaminergic neurons in the ventral tegmental area: interaction with intrinsic ion channels and neurotransmitter inputs. Int Rev Neurobiol. 2010;91:235-288.
Google Scholar |
Crossref |
Medline8.
You, C, Vandegrift, B, Brodie, MS. Ethanol actions on the ventral tegmental area: novel potential targets on reward pathway neurons. Psychopharmacology (Berl). 2018;235:1711-1726.
Google Scholar |
Crossref |
Medline9.
Hirth, N, Meinhardt, MW, Noori, HR, et al. Convergent evidence from alcohol-dependent humans and rats for a hyperdopaminergic state in protracted abstinence. Proc Natl Acad Sci U S A. 2016;113:3024-3029.
Google Scholar |
Crossref |
Medline10.
Mesman, S, Smidt, MP. Acquisition of the midbrain dopaminergic neuronal identity. Int J Mol Sci. 2020;21:4638.
Google Scholar |
Crossref11.
Di Giovannantonio, LG, Di Salvio, M, Acampora, D, Prakash, N, Wurst, W, Simeone, A. Otx2 selectively controls the neurogenesis of specific neuronal subtypes of the ventral tegmental area and compensates En1-dependent neuronal loss and MPTP vulnerability. Dev Biol. 2013;373:176-183.
Google Scholar |
Crossref |
Medline12.
Di Salvio, M, Di Giovannantonio, LG, Acampora, D, et al. Otx2 controls neuron subtype identity in ventral tegmental area and antagonizes vulnerability to MPTP. Nat Neurosci. 2010;13:1481-1488.
Google Scholar |
Crossref |
Medline13.
Panman, L, Papathanou, M, Laguna, A, et al. Sox6 and Otx2 control the specification of substantia nigra and ventral tegmental area dopamine neurons. Cell Rep. 2014;8:1018-1025.
Google Scholar |
Crossref |
Medline14.
Tripathi, PP, Di Giovannantonio, LG, Sanguinetti, E, et al. Increased dopaminergic innervation in the brain of conditional mutant mice overexpressing Otx2: effects on locomotor behavior and seizure susceptibility. Neuroscience. 2014;261:173-183.
Google Scholar |
Crossref |
Medline15.
Kleiber, ML, Laufer, BI, Wright, E, Diehl, EJ, Singh, SM. Long-term alterations to the brain transcriptome in a maternal voluntary consumption model of fetal alcohol spectrum disorders. Brain Res. 2012;1458:18-33.
Google Scholar |
Crossref |
Medline16.
Théberge, ET, Baker, JA, Dubose, C, et al. Genetic influences on the amount of cell death in the neural tube of BXD mice exposed to acute ethanol at midgestation. Alcohol Clin Exp Res. 2019;43:439-452.
Google Scholar |
Crossref |
Medline17.
Peña, CJ, Kronman, HG, Walker, DM, et al. Early life stress confers lifelong stress susceptibility in mice via ventral tegmental area OTX2. Science. 2017;356:1185-1188.
Google Scholar18.
Lai, HM, Cleary, M, Sitharthan, T, et al. Prevalence of comorbid substance use, anxiety and mood disorders in epidemiological surveys, 1990-2014: a systematic review and meta-analysis. Drug Alcohol Depend. 2015;154:1-13.
Google Scholar |
Crossref |
Medline19.
Kuria, MW, Ndetei, DM, Obot, IS, et al. The association between alcohol dependence and depression before and after treatment for alcohol dependence. ISRN Psychiatry. 2012;2012:482802.
Google Scholar |
Crossref |
Medline20.
Brière, FN, Rohde, P, Seeley, JR, Klein, D, Lewinsohn, PM. Comorbidity between major depression and alcohol use disorder from adolescence to adulthood. Compr Psychiatry. 2014;55:526-533.
Google Scholar |
Crossref |
Medline21.
Di Salvio, M, Di Giovannantonio, LG, Omodei, D, Acampora, D, Simeone, A. Otx2 expression is restricted to dopaminergic neurons of the ventral tegmental area in the adult brain. Int J Dev Biol. 2010;54:939-945.
Google Scholar |
Crossref |
Medline22.
Simeone, A, Di Salvio, M, Di Giovannantonio, LG, Acampora, D, Omodei, D, Tomasetti, C. The role of otx2 in adult mesencephalic-diencephalic dopaminergic neurons. Mol Neurobiol. 2011;43:107-113.
Google Scholar |
Crossref |
Medline23.
Thiele, TE, Navarro, M. “Drinking in the dark” (DID) procedures: a model of binge-like ethanol drinking in non-dependent mice. Alcohol. 2014;48:235-241.
Google Scholar |
Crossref |
Medline24.
Chen, H, He, D, Lasek, AW. Midkine in the mouse ventral tegmental area limits ethanol intake and Ccl2 gene expression. Genes Brain Behav. 2017;16:699-708.
Google Scholar |
Crossref |
Medline25.
Zapata, A, Gonzales, RA, Shippenberg, TS. Repeated ethanol intoxication induces behavioral sensitization in the absence of a sensitized accumbens dopamine response in C57BL/6J and DBA/2J mice. Neuropsychopharmacology. 2006;31:396-405.
Google Scholar |
Crossref |
Medline26.
Lasek, AW, Janak, PH, He, L, Whistler, JL, Heberlein, U. Downregulation of mu opioid receptor by RNA interference in the ventral tegmental area reduces ethanol consumption in mice. Genes Brain Behav. 2007;6:728-735.
Google Scholar |
Crossref |
Medline27.
Lasek, AW, Azouaou, N. Virus-delivered RNA interference in mouse brain to study addiction-related behaviors. Methods Mol Biol. 2010;602:283-298.
Google Scholar |
Crossref |
Medline28.
Satta, R, Hilderbrand, ER, Lasek, AW. Ovarian hormones contribute to high levels of binge-like drinking by female mice. Alcohol Clin Exp Res. 2018;42:286-294.
Google Scholar |
Crossref |
Medline29.
Kikuchi, S, Muramatsu, H, Muramatsu, T, Kim, SU. Midkine, a novel neurotrophic factor, promotes survival of mesencephalic neurons in culture. Neurosci Lett. 1993;160:9-12.
Google Scholar |
Crossref |
Medline30.
Ohgake, S, Shimizu, E, Hashimoto, K, et al. Dopaminergic hypofunctions and prepulse inhibition deficits in mice lacking midkine. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33:541-546.
Google Scholar |
Crossref |
Medline31.
Fornes, O, Castro-Mondragon, JA, Khan, A, et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2020;48:D87-D92.
Google Scholar |
Medline32.
Chung, S, Leung, A, Han, BS, et al. Wnt1-lmx1a forms a novel autoregulatory loop and controls midbrain dopaminergic differentiation synergistically with the SHH-FoxA2 pathway. Cell Stem Cell. 2009;5:646-658.
Google Scholar |
Crossref |
Medline33.
Willert, K, Nusse, R. Beta-catenin: a key mediator of Wnt signaling. Curr Opin Genet Dev. 1998;8:95-102.
Google Scholar |
Crossref |
Medline34.
Xu, CQ, de la Monte, SM, Tong, M, Huang, CK, Kim, M. Chronic ethanol-induced impairment of Wnt/beta-catenin signaling is attenuated by PPAR-delta agonist. Alcohol Clin Exp Res. 2015;39:969-979.
Google Scholar |
Crossref |
Medline35.
He, D, Chen, H, Muramatsu, H, Lasek, AW. Ethanol activates midkine and anaplastic lymphoma kinase signaling in neuroblastoma cells and in the brain. J Neurochem. 2015;135:508-521.
Google Scholar |
Crossref |
Medline36.
Dutton, JW, Chen, H, You, C, Brodie, MS, Lasek, AW. Anaplastic lymphoma kinase regulates binge-like drinking and dopamine receptor sensitivity in the ventral tegmental area. Addict Biol. 2017;22:665-678.
Google Scholar |
Crossref |
Medline37.
Sakai, A, Sugiyama, S. Experience-dependent transcriptional regulation in juvenile brain development. Dev Growth Differ. 2018;60:473-482.
Google Scholar |
Crossref |
Medline38.
Sugiyama, S, Di Nardo, AA, Aizawa, S, et al. Experience-dependent transfer of Otx2 homeoprotein into the visual cortex activates postnatal plasticity. Cell. 2008;134:508-520.
Google Scholar |
Crossref |
Medline39.
Ruiz-Reig, N, Rakotobe, M, Bethus, I, et al. Developmental requirement of homeoprotein Otx2 for specific habenulo-interpeduncular subcircuits. J Neurosci. 2019;39:1005-1019.
Google Scholar |
Crossref |
Medline40.
McLaughlin, I, Dani, JA, De Biasi, M. The medial habenula and interpeduncular nucleus circuitry is critical in addiction, anxiety, and mood regulation. J Neurochem. 2017;142 Suppl 2:130-143.
Google Scholar |
Crossref |
Medline41.
Kim, N, Acampora, D, Dingli, F, et al. Immunoprecipitation and mass spectrometry identify non-cell autonomous Otx2 homeoprotein in the granular and supragranular layers of mouse visual cortex. F1000Res. 2014;3:178.
Google Scholar |
Crossref |
Medline42.
Spatazza, J, Lee, HH, Di Nardo, AA, et al. Choroid-plexus-derived Otx2 homeoprotein constrains adult cortical plasticity. Cell Rep. 2013;3:1815-1823.
Google Scholar |
Crossref |
Medline
Comments (0)