Binge-Like Ethanol Drinking Increases Otx2, Wnt1, and Mdk Gene Expression in the Ventral Tegmental Area of Adult Mice

1. Bouchery, EE, Harwood, HJ, Sacks, JJ, Simon, CJ, Brewer, RD. Economic costs of excessive alcohol consumption in the U.S., 2006. Am J Prev Med. 2011;41:516-524.
Google Scholar | Crossref | Medline2. Sacks, JJ, Gonzales, KR, Bouchery, EE, Tomedi, LE, Brewer, RD. 2010 national and state costs of excessive alcohol consumption. Am J Prev Med. 2015;49:e73-e79.
Google Scholar | Crossref | Medline3. Koob, GF, Volkow, ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35:217-238.
Google Scholar | Crossref | Medline4. Brodie, MS, Pesold, C, Appel, SB. Ethanol directly excites dopaminergic ventral tegmental area reward neurons. Alcohol Clin Exp Res. 1999;23:1848-1852.
Google Scholar | Crossref | Medline5. Brodie, MS, Shefner, SA, Dunwiddie, TV. Ethanol increases the firing rate of dopamine neurons of the rat ventral tegmental area in vitro. Brain Res. 1990;508:65-69.
Google Scholar | Crossref | Medline6. Gessa, GL, Muntoni, F, Collu, M, Vargiu, L, Mereu, G. Low doses of ethanol activate dopaminergic neurons in the ventral tegmental area. Brain Res. 1985;348:201-203.
Google Scholar | Crossref | Medline7. Morikawa, H, Morrisett, RA. Ethanol action on dopaminergic neurons in the ventral tegmental area: interaction with intrinsic ion channels and neurotransmitter inputs. Int Rev Neurobiol. 2010;91:235-288.
Google Scholar | Crossref | Medline8. You, C, Vandegrift, B, Brodie, MS. Ethanol actions on the ventral tegmental area: novel potential targets on reward pathway neurons. Psychopharmacology (Berl). 2018;235:1711-1726.
Google Scholar | Crossref | Medline9. Hirth, N, Meinhardt, MW, Noori, HR, et al. Convergent evidence from alcohol-dependent humans and rats for a hyperdopaminergic state in protracted abstinence. Proc Natl Acad Sci U S A. 2016;113:3024-3029.
Google Scholar | Crossref | Medline10. Mesman, S, Smidt, MP. Acquisition of the midbrain dopaminergic neuronal identity. Int J Mol Sci. 2020;21:4638.
Google Scholar | Crossref11. Di Giovannantonio, LG, Di Salvio, M, Acampora, D, Prakash, N, Wurst, W, Simeone, A. Otx2 selectively controls the neurogenesis of specific neuronal subtypes of the ventral tegmental area and compensates En1-dependent neuronal loss and MPTP vulnerability. Dev Biol. 2013;373:176-183.
Google Scholar | Crossref | Medline12. Di Salvio, M, Di Giovannantonio, LG, Acampora, D, et al. Otx2 controls neuron subtype identity in ventral tegmental area and antagonizes vulnerability to MPTP. Nat Neurosci. 2010;13:1481-1488.
Google Scholar | Crossref | Medline13. Panman, L, Papathanou, M, Laguna, A, et al. Sox6 and Otx2 control the specification of substantia nigra and ventral tegmental area dopamine neurons. Cell Rep. 2014;8:1018-1025.
Google Scholar | Crossref | Medline14. Tripathi, PP, Di Giovannantonio, LG, Sanguinetti, E, et al. Increased dopaminergic innervation in the brain of conditional mutant mice overexpressing Otx2: effects on locomotor behavior and seizure susceptibility. Neuroscience. 2014;261:173-183.
Google Scholar | Crossref | Medline15. Kleiber, ML, Laufer, BI, Wright, E, Diehl, EJ, Singh, SM. Long-term alterations to the brain transcriptome in a maternal voluntary consumption model of fetal alcohol spectrum disorders. Brain Res. 2012;1458:18-33.
Google Scholar | Crossref | Medline16. Théberge, ET, Baker, JA, Dubose, C, et al. Genetic influences on the amount of cell death in the neural tube of BXD mice exposed to acute ethanol at midgestation. Alcohol Clin Exp Res. 2019;43:439-452.
Google Scholar | Crossref | Medline17. Peña, CJ, Kronman, HG, Walker, DM, et al. Early life stress confers lifelong stress susceptibility in mice via ventral tegmental area OTX2. Science. 2017;356:1185-1188.
Google Scholar18. Lai, HM, Cleary, M, Sitharthan, T, et al. Prevalence of comorbid substance use, anxiety and mood disorders in epidemiological surveys, 1990-2014: a systematic review and meta-analysis. Drug Alcohol Depend. 2015;154:1-13.
Google Scholar | Crossref | Medline19. Kuria, MW, Ndetei, DM, Obot, IS, et al. The association between alcohol dependence and depression before and after treatment for alcohol dependence. ISRN Psychiatry. 2012;2012:482802.
Google Scholar | Crossref | Medline20. Brière, FN, Rohde, P, Seeley, JR, Klein, D, Lewinsohn, PM. Comorbidity between major depression and alcohol use disorder from adolescence to adulthood. Compr Psychiatry. 2014;55:526-533.
Google Scholar | Crossref | Medline21. Di Salvio, M, Di Giovannantonio, LG, Omodei, D, Acampora, D, Simeone, A. Otx2 expression is restricted to dopaminergic neurons of the ventral tegmental area in the adult brain. Int J Dev Biol. 2010;54:939-945.
Google Scholar | Crossref | Medline22. Simeone, A, Di Salvio, M, Di Giovannantonio, LG, Acampora, D, Omodei, D, Tomasetti, C. The role of otx2 in adult mesencephalic-diencephalic dopaminergic neurons. Mol Neurobiol. 2011;43:107-113.
Google Scholar | Crossref | Medline23. Thiele, TE, Navarro, M. “Drinking in the dark” (DID) procedures: a model of binge-like ethanol drinking in non-dependent mice. Alcohol. 2014;48:235-241.
Google Scholar | Crossref | Medline24. Chen, H, He, D, Lasek, AW. Midkine in the mouse ventral tegmental area limits ethanol intake and Ccl2 gene expression. Genes Brain Behav. 2017;16:699-708.
Google Scholar | Crossref | Medline25. Zapata, A, Gonzales, RA, Shippenberg, TS. Repeated ethanol intoxication induces behavioral sensitization in the absence of a sensitized accumbens dopamine response in C57BL/6J and DBA/2J mice. Neuropsychopharmacology. 2006;31:396-405.
Google Scholar | Crossref | Medline26. Lasek, AW, Janak, PH, He, L, Whistler, JL, Heberlein, U. Downregulation of mu opioid receptor by RNA interference in the ventral tegmental area reduces ethanol consumption in mice. Genes Brain Behav. 2007;6:728-735.
Google Scholar | Crossref | Medline27. Lasek, AW, Azouaou, N. Virus-delivered RNA interference in mouse brain to study addiction-related behaviors. Methods Mol Biol. 2010;602:283-298.
Google Scholar | Crossref | Medline28. Satta, R, Hilderbrand, ER, Lasek, AW. Ovarian hormones contribute to high levels of binge-like drinking by female mice. Alcohol Clin Exp Res. 2018;42:286-294.
Google Scholar | Crossref | Medline29. Kikuchi, S, Muramatsu, H, Muramatsu, T, Kim, SU. Midkine, a novel neurotrophic factor, promotes survival of mesencephalic neurons in culture. Neurosci Lett. 1993;160:9-12.
Google Scholar | Crossref | Medline30. Ohgake, S, Shimizu, E, Hashimoto, K, et al. Dopaminergic hypofunctions and prepulse inhibition deficits in mice lacking midkine. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33:541-546.
Google Scholar | Crossref | Medline31. Fornes, O, Castro-Mondragon, JA, Khan, A, et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2020;48:D87-D92.
Google Scholar | Medline32. Chung, S, Leung, A, Han, BS, et al. Wnt1-lmx1a forms a novel autoregulatory loop and controls midbrain dopaminergic differentiation synergistically with the SHH-FoxA2 pathway. Cell Stem Cell. 2009;5:646-658.
Google Scholar | Crossref | Medline33. Willert, K, Nusse, R. Beta-catenin: a key mediator of Wnt signaling. Curr Opin Genet Dev. 1998;8:95-102.
Google Scholar | Crossref | Medline34. Xu, CQ, de la Monte, SM, Tong, M, Huang, CK, Kim, M. Chronic ethanol-induced impairment of Wnt/beta-catenin signaling is attenuated by PPAR-delta agonist. Alcohol Clin Exp Res. 2015;39:969-979.
Google Scholar | Crossref | Medline35. He, D, Chen, H, Muramatsu, H, Lasek, AW. Ethanol activates midkine and anaplastic lymphoma kinase signaling in neuroblastoma cells and in the brain. J Neurochem. 2015;135:508-521.
Google Scholar | Crossref | Medline36. Dutton, JW, Chen, H, You, C, Brodie, MS, Lasek, AW. Anaplastic lymphoma kinase regulates binge-like drinking and dopamine receptor sensitivity in the ventral tegmental area. Addict Biol. 2017;22:665-678.
Google Scholar | Crossref | Medline37. Sakai, A, Sugiyama, S. Experience-dependent transcriptional regulation in juvenile brain development. Dev Growth Differ. 2018;60:473-482.
Google Scholar | Crossref | Medline38. Sugiyama, S, Di Nardo, AA, Aizawa, S, et al. Experience-dependent transfer of Otx2 homeoprotein into the visual cortex activates postnatal plasticity. Cell. 2008;134:508-520.
Google Scholar | Crossref | Medline39. Ruiz-Reig, N, Rakotobe, M, Bethus, I, et al. Developmental requirement of homeoprotein Otx2 for specific habenulo-interpeduncular subcircuits. J Neurosci. 2019;39:1005-1019.
Google Scholar | Crossref | Medline40. McLaughlin, I, Dani, JA, De Biasi, M. The medial habenula and interpeduncular nucleus circuitry is critical in addiction, anxiety, and mood regulation. J Neurochem. 2017;142 Suppl 2:130-143.
Google Scholar | Crossref | Medline41. Kim, N, Acampora, D, Dingli, F, et al. Immunoprecipitation and mass spectrometry identify non-cell autonomous Otx2 homeoprotein in the granular and supragranular layers of mouse visual cortex. F1000Res. 2014;3:178.
Google Scholar | Crossref | Medline42. Spatazza, J, Lee, HH, Di Nardo, AA, et al. Choroid-plexus-derived Otx2 homeoprotein constrains adult cortical plasticity. Cell Rep. 2013;3:1815-1823.
Google Scholar | Crossref | Medline

Comments (0)

No login
gif