1.
Raichle, ME, Gusnard, DA. Appraising the brain's energy budget. Proc Natl Acad Sci U S A. 2002;99(16):10237-10239.
Google Scholar |
Crossref |
Medline2.
Magistretti, PJ, Allaman, I. Brain energy metabolism. In: Neuroscience in the 21st Century: From Basic to Clinical. Springer; 2013:1591-1620.
Google Scholar3.
De Vivo, DC, Trifiletti, RR, Jacobson, RI, Ronen, GM, Behmand, RA, Harik, SI. Defective glucose transport across the blood-brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. N Engl J Med. 1991;325(10):703-709.
Google Scholar |
Crossref |
Medline4.
Seidner, G, Alvarez, MG, Yeh, JI, et al. GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood-brain barrier hexose carrier. Nat Genet. 1998;18(2):188-191.
Google Scholar |
Crossref |
Medline5.
Wang, D, Pascual, JM, Yang, H, et al. A mouse model for Glut-1 haploinsufficiency. Hum Mol Genet. 2006;15(7):1169-1179.
Google Scholar |
Crossref |
Medline6.
Wang, D, Pascual, JM, De Vivo, D. Glucose transporter type 1 deficiency syndrome. In: Adam, MP, Ardinger, HH, Pagon, RA, et al., eds. GeneReviews®. University of Washington; 2002.
Google Scholar7.
Wang, D, Pascual, JM, Yang, H, et al. Glut-1 deficiency syndrome: clinical, genetic, and therapeutic aspects. Ann Neurol. 2005;57(1):111-118.
Google Scholar |
Crossref |
Medline8.
Brockmann, K . The expanding phenotype of GLUT1-deficiency syndrome. Brain Dev. 2009;31(7):545-552.
Google Scholar |
Crossref |
Medline9.
Suls, A, Dedeken, P, Goffin, K, et al. Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1. Brain. 2008;131(Pt 7):1831-1844.
Google Scholar |
Crossref |
Medline10.
Weber, YG, Storch, A, Wuttke, TV, et al. GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest. 2008;118(6):2157-2168.
Google Scholar |
Crossref |
Medline11.
Leen, WG, Wevers, RA, Kamsteeg, EJ, Scheffer, H, Verbeek, MM, Willemsen, MA. Cerebrospinal fluid analysis in the workup of GLUT1 deficiency syndrome: a systematic review. JAMA Neurol. 2013;70(11):1440-1444.
Google Scholar |
Crossref |
Medline12.
Tang, M, Park, SH, De Vivo, DC, Monani, UR. Therapeutic strategies for glucose transporter 1 deficiency syndrome. Ann Clin Transl Neurol. 2019;6(9):1923-1932.
Google Scholar |
Crossref |
Medline13.
Arsov, T, Mullen, SA, Rogers, S, et al. Glucose transporter 1 deficiency in the idiopathic generalized epilepsies. Ann Neurol. 2012;72(5):807-815.
Google Scholar |
Crossref |
Medline14.
Arsov, T, Mullen, SA, Damiano, JA, et al. Early onset absence epilepsy: 1 in 10 cases is caused by GLUT1 deficiency. Epilepsia. 2012;53(12):e204-e207.
Google Scholar |
Crossref |
Medline15.
Fiest, KM, Sauro, KM, Wiebe, S, et al. Prevalence and incidence of epilepsy: a systematic review and meta-analysis of international studies [published correction appears in Neurology. 2017 Aug 8;89(6):642]. Neurology. 2017;88(3):296-303.
Google Scholar |
Crossref |
Medline16.
Jallon, P, Latour, P. Epidemiology of idiopathic generalized epilepsies. Epilepsia. 2005;46(Suppl 9):10-14.
Google Scholar |
Crossref |
Medline17.
Foster, NL, Heidebrink, JL, Clark, CM, et al. FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer's disease. Brain. 2007;130(Pt 10):2616-2635.
Google Scholar |
Crossref |
Medline18.
Friedland, RP, Budinger, TF, Ganz, E, et al. Regional cerebral metabolic alterations in dementia of the Alzheimer type: positron emission tomography with [18F]fluorodeoxyglucose. J Comput Assist Tomogr. 1983;7(4):590-598.
Google Scholar |
Crossref |
Medline19.
Herholz, K, Carter, SF, Jones, M. Positron emission tomography imaging in dementia. Br J Radiol. 2007;80:S160-S167.
Google Scholar |
Crossref |
Medline20.
Jagust, W, Reed, B, Mungas, D, Ellis, W, Decarli, C. What does fluorodeoxyglucose PET imaging add to a clinical diagnosis of dementia? Neurology. 2007;69(9):871-877.
Google Scholar |
Crossref |
Medline21.
Dumurgier, J, Paquet, C, Peoc'h, K, et al. CSF Aβ₁₋₄₂ levels and glucose metabolism in Alzheimer's disease. J Alzheimers Dis. 2011;27(4):845-851.
Google Scholar |
Crossref |
Medline22.
Bélanger, M, Allaman, I, Magistretti, PJ. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 2011;14(6):724-738.
Google Scholar |
Crossref |
Medline23.
Morgello, S, Uson, RR, Schwartz, EJ, Haber, RS. The human blood-brain barrier glucose transporter (GLUT1) is a glucose transporter of gray matter astrocytes. Glia. 1995;14(1):43-54.
Google Scholar |
Crossref |
Medline24.
Winkler, EA, Nishida, Y, Sagare, AP, et al. GLUT1 reductions exacerbate Alzheimer’s disease vasculo-neuronal dysfunction and degeneration. Nat Neurosci. 2015;18(4):521-530.
Google Scholar |
Crossref |
Medline25.
Tang, M, Gao, G, Rueda, CB, et al. Brain microvasculature defects and Glut1 deficiency syndrome averted by early repletion of the glucose transporter-1 protein. Nat Commun. 2017;8:14152.
Google Scholar |
Crossref |
Medline26.
Veys, K, Fan, Z, Ghobrial, M, et al. Role of the GLUT1 glucose transporter in postnatal CNS angiogenesis and blood-brain barrier integrity. Circ Res. 2020;127(4):466-482.
Google Scholar |
Crossref |
Medline27.
Tang, M, Park, SH, Petri, S, et al. An early endothelial cell-specific requirement for Glut1 is revealed in Glut1 deficiency syndrome model mice. JCI Insight. 2020;2020:145789.
Google Scholar28.
Potente, M, Gerhardt, H, Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell. 2011;146(6):873-887.
Google Scholar |
Crossref |
Medline29.
Swarup, A, Samuels, IS, Bell, BA, et al. Modulating GLUT1 expression in retinal pigment epithelium decreases glucose levels in the retina: impact on photoreceptors and Müller glial cells. Am J Physiol Cell Physiol. 2019;316(1):C121-C133.
Google Scholar |
Crossref |
Medline30.
Kumagai, AK . Glucose transport in brain and retina: implications in the management and complications of diabetes. Diabetes Metab Res Rev. 1999;15(4):261-273.
Google Scholar |
Crossref |
Medline31.
Takata, K . Glucose transporters in the transepithelial transport of glucose. J Electron Microsc (Tokyo). 1996;45(4):275-284.
Google Scholar |
Crossref |
Medline32.
Henry, M, Kitchens, J, Pascual, JM, Maldonado, RS. GLUT1 deficiency: retinal detrimental effects of gliovascular modulation. Neurol Genet. 2020;6(4):e472.
Google Scholar |
Crossref |
Medline33.
Harb, R, Whiteus, C, Freitas, C, Grutzendler, J. In vivo imaging of cerebral microvascular plasticity from birth to death. J Cereb Blood Flow Metab. 2013;33(1):146-156.
Google Scholar |
SAGE Journals34.
Pascual, JM, Wang, D, Hinton, V, et al. Brain glucose supply and the syndrome of infantile neuroglycopenia. Arch Neurol. 2007;64(4):507-513.
Google Scholar |
Crossref |
Medline35.
Nakamura, S, Osaka, H, Muramatsu, SI, et al. Gene therapy for a mouse model of glucose transporter-1 deficiency syndrome. Mol Genet Metab Rep. 2017;10:67-74.
Google Scholar |
Crossref |
Medline36.
Jais, A, Solas, M, Backes, H, et al. Myeloid-cell-derived VEGF maintains brain glucose uptake and limits cognitive impairment in obesity. Cell. 2016;165(4):882-895.
Google Scholar |
Crossref |
Medline37.
Lutz, CM, Kariya, S, Patruni, S, et al. Postsymptomatic restoration of SMN rescues the disease phenotype in a mouse model of severe spinal muscular atrophy. J Clin Invest. 2011;121(8):3029-3041.
Google Scholar |
Crossref |
Medline38.
Kariya, S, Obis, T, Garone, C, et al. Requirement of enhanced survival motoneuron protein imposed during neuromuscular junction maturation. J Clin Invest. 2014;124(2):785-800.
Google Scholar |
Crossref |
Medline39.
Monani, UR, De Vivo, DC. Neurodegeneration in spinal muscular atrophy: from disease phenotype and animal models to therapeutic strategies and beyond. Future Neurol. 2014;9(1):49-65.
Google Scholar |
Crossref |
Medline40.
Chao, MV . Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci. 2003;4(4):299-309.
Google Scholar |
Crossref |
Medline41.
Kermani, P, Hempstead, B. Brain-derived neurotrophic factor: a newly described mediator of angiogenesis. Trends Cardiovasc Med. 2007;17(4):140-143.
Google Scholar |
Crossref |
Medline42.
Nordli, DR Jr, De, Vivo, DC. The ketogenic diet revisited: back to the future. Epilepsia. 1997;38(7):743-749.
Google Scholar |
Crossref |
Medline43.
Klepper, J, Leiendecker, B. Glut1 deficiency syndrome and novel ketogenic diets. J Child Neurol. 2013;28(8):1045-1048.
Google Scholar |
SAGE Journals44.
Bekker, YAC, Lambrechts, DA, Verhoeven, JS, et al. Failure of ketogenic diet therapy in GLUT1 deficiency syndrome. Eur J Paediatr Neurol. 2019;23(3):404-409.
Google Scholar |
Crossref |
Medline45.
Hahn, TJ, Halstead, LR, DeVivo, DC. Disordered mineral metabolism produced by ketogenic diet therapy. Calcif Tissue Int. 1979;28(1):17-22.
Google Scholar |
Crossref |
Medline46.
DeVivo, DC, Pagliara, AS, Prensky, AL. Ketotic hypoglycemia and the ketogenic diet. Neurology. 1973;23(6):640-649.
Google Scholar |
Crossref |
Medline47.
DeVivo, DC, Haymond, MW, Leckie, MP, Bussman, YL, McDougal, DB, Pagliara, AS. The clinical and biochemical implications of pyruvate carboxylase deficiency. J Clin Endocrinol Metab. 1977;45(6):1281-1296.
Google Scholar |
Crossref |
Medline48.
Globe Newswire, Ultragenyx Pharmaceutical Inc . Ultragenyx announces negative topline results from phase 3 study of UX007 in patients with Glut1 DS with disabling movement disorders. 2018. Accessed June 5, 2019. Available
http://ir.ultragenyx.com/news-releases/news-release-details/ultragenyx-announces-negative-topline-results-phase-3-study Google Scholar49.
Mendell, JR, Al-Zaidy, S, Shell, R, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med. 2017;377(18):1713-1722.
Google Scholar |
Crossref |
Medline50.
Aït-Ali, N, Fridlich, R, Millet-Puel, G, et al. Rod-derived cone viability factor promotes cone survival by stimulating aerobic glycolysis. Cell. 2015;161(4):817-832.
Google Scholar |
Crossref |
Medline51.
Mooradian, AD, Chung, HC, Shah, GN. GLUT-1 expression in the cerebra of patients with Alzheimer’s disease. Neurobiol Aging. 1997;18(5):469-474.
Google Scholar |
Crossref |
Medline52.
Kalaria, RN, Harik, SI. Reduced glucose transporter at the blood-brain barrier and in cerebral cortex in Alzheimer disease. J Neurochem. 1989;53(4):1083-1088.
Google Scholar |
Comments (0)