K. Fabel and G. Kempermann, “Physical activity and the regulation of neurogenesis in the adult and aging brain,” Neuromol. Med., 10, No. 2, 59–66 (2008); doi: https://doi.org/10.1007/s12017-008-8031-4.
2.F. Gomez-Pinilla and C. Hillman, “The influence of exercise on cognitive abilities,” Compr. Physiol., 3, No. 1, 403–428 (2013); doi: https://doi.org/10.1002/cphy.c110063.
Article PubMed PubMed Central Google Scholar
3.T. E. Graber, P. K. McCamphill, and W. S. Sossin, “A recollection of mTOR signaling in learning and memory,” Learn. Mem., 20, No. 10. 518–530 (2013); doi: https://doi.org/10.1101/lm.027664.112.
CAS Article PubMed Google Scholar
4.T. Itoh, M. Imano, S. Nishida, et al., “Exercise increases neural stem cell proliferation surrounding the area of damage following rat traumatic brain injury,”J. Neural Transm. (Vienna), 118, No. 2, 193–202 (2011); doi: https://doi.org/10.1007/s00702-010-0495-3.
5.S. Beheshti and S. Shahrokhi, “Blocking the ghrelin receptor type 1a in the rat brain impairs memory encoding,” Neuropeptides, 52, 97–102 (2015); doi: https://doi.org/10.1016/j.npep.2015.05.003.
CAS Article PubMed Google Scholar
6.V. P. Carlini, M. E. Monzón, M. M. Varas, et al., “Ghrelin increases anxiety-like behavior and memory retention in rats,” Biochem. Biophys. Res. Commun., 299, No. 5, 739–743 (2002); doi: https://doi.org/10.1016/s0006-291x(02)02740-7.
CAS Article PubMed Google Scholar
7.V. P. Carlini, M. M. Varas, A. B. Cragnolini, et al., “Differential role of the hippocampus, amygdala, and dorsal raphe nucleus in regulating feeding, memory, and anxiety-like behavioral responses to ghrelin,” Biochem. Biophys. Res. Commun., 313, No. 3, 635–641 (2004); doi: https://doi.org/10.1016/j.bbrc.2003.11.150.
CAS Article PubMed Google Scholar
8.H. Zheng, Y. Liu, W. Li, et al., “Beneficial effects of exercise and its molecular mechanisms on depression in rats,” Behav. Brain Res., 168, No. 1, 47–55 (2006); doi: https://doi.org/10.1016/j.bbr.2005.10.007.
CAS Article PubMed Google Scholar
9.I. Sakata, K. Nakamura, M. Yamazaki, et al., “Ghrelinproducing cells exist as two types of cells, closed- and opened-type cells, in the rat gastrointestinal tract,” Peptides, 23, No. 3, 531–536 (2002); doi: https://doi.org/10.1016/s0196-9781(01)00633-7.
CAS Article PubMed Google Scholar
10.C. W. Cotman and C. Engesser-Cesar, “Exercise enhances and protects brain function,” Exerc. Sport Sci. Rev., 30, No. 2, 75–79 (2002); doi: https://doi.org/10.1097/00003677-200204000-00006.
11.M. N. Farsani, M. Peeri, H. M. Homaee, and M. Ali, “The effect of high intensity aerobic exercise training on plasma levels of ghrelin in male rats,” available on: https://www.semanticscholar.org/ (2013).
12.S. Kang, N. R. Moon, D. S. Kim, et al., “Central acylated ghrelin improves memory function and hippocampal AMPK activation and partly reverses the impairment of energy and glucose metabolism in rats infused with β–amyloid,” Peptides, 71, 84–93 (2015); doi: https://doi.org/10.1016/j.peptides.2015.07.005.
CAS Article PubMed Google Scholar
13.G. Paxinos and C. Watson C. The Rat Brain in Stereotaxic Coordinates: Hard Cover Edition. Elsevier (2006).
14.B. A. Kent, A. L. Beynon, A. K. Hornsby, et al., “The orexigenic hormone acyl-ghrelin increases adult hippocampal neurogenesis and enhances pattern separation,” Psychoneuroendocrinology, 51, 431–439 (2015); doi: https://doi.org/10.1016/j.psyneuen.2014.10.015.
CAS Article PubMed PubMed Central Google Scholar
15.É. W. Griffin, S. Mullally, C. Foley, et al., “Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males,” Physiol. Behav., 104, No. 5, 934–941 (2011); doi: https://doi.org/10.1016/j.physbeh.2011.06.005.
CAS Article PubMed Google Scholar
16.R. Molteni, J. Q. Zheng, Z. Ying, et al., “Voluntary exercise increases axonal regeneration from sensory neurons,” Proc. Natl. Acad. Sci. U.S.A., 101, No. 22, 8473–8478 (2004); doi: https://doi.org/10.1073/pnas.0401443101.
Comments (0)