American College of Sports Medicine . (2013). ACSM’s guidelines for exercise testing and prescription. Lippincott Williams & Wilkins.
Google Scholar
Anderson, A. K., Wais, P. E., Gabrieli, J. D. (2006). Emotion enhances remembrance of neutral events past. Proceedings of the National Academy of Sciences of the United States of America, 103(5), 1599–1604.
https://doi.org/10.1073/pnas.0506308103 Google Scholar
Barsegyan, A., Mackenzie, S. M., Kurose, B. D., McGaugh, J. L., Roozendaal, B. (2010). Glucocorticoids in the prefrontal cortex enhance memory consolidation and impair working memory by a common neural mechanism. Proceedings of the National Academy of Sciences of the United States of America, 107(38), 16655–16660.
https://doi.org/10.1073/pnas.1011975107 Google Scholar
Baym, C. L., Khan, N. A., Pence, A., Raine, L. B., Hillman, C. H., Cohen, N. J. (2014). Aerobic fitness predicts relational memory but not item memory performance in healthy young adults. Journal of Cognitive Neuroscience, 26(11), 2645–2652.
https://doi.org/10.1162/jocn_a_00667 Google Scholar
Bennett, H., Parfitt, G., Davison, K., Eston, R. (2016). Validity of submaximal step tests to estimate maximal oxygen uptake in healthy adults. Sports Medicine, 46(5), 737–750.
https://doi.org/10.1007/s40279-015-0445-1 Google Scholar
Blough, J., Loprinzi, P. D. (2019). Experimental manipulation of psychological control scenarios: Implications for exercise and memory research. Psych, 1(1), 279–289.
https://doi.org/10.3390/psych1010019 Google Scholar
Borg, E., Kaijser, L. (2006). A comparison between three rating scales for perceived exertion and two different work tests. Scandinavian Journal of Medicine & Science in Sports, 16(1), 57–69. Chicago
https://doi.org/10.1111/j.1600-0838.2005.00448.x Google Scholar
Brown, R., Kulik, J. (1977). Flashbulb memories. Cognition, 5(1), 73–99.
https://doi.org/10.1016/0010-0277(77)90018-X Google Scholar
Buckley, J., Sim, J., Eston, R., Hession, R., Fox, R. (2004). Reliability and validity of measures taken during the Chester step test to predict aerobic power and to prescribe aerobic exercise. British Journal of Sports Medicine, 38(2), 197–205.
https://doi.org/10.1136/bjsm.2003.005389 Google Scholar
Cahill, L., Alkire, M. T. (2003). Epinephrine enhancement of human memory consolidation: Interaction with arousal at encoding. Neurobiology of Learning and Memory, 79(2), 194–198.
https://doi.org/10.1016/S1074-7427(02)00036-9 Google Scholar
Chandler, M. C., McGowan, A. L., Burles, F., Mathewson, K. E., Scavuzzo, C. J., Pontifex, M. B. (2020). Aerobic fitness unrelated to acquisition of spatial relational memory in college-aged adults. Journal of Sport and Exercise Psychology, 42(6), 472–479.
https://doi.org/10.1123/jsep.2020-0004 Google Scholar
Chang, Y.-K., Labban, J., Gapin, J., Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87–101.
https://doi.org/10.1016/j.brainres.2012.02.068 Google Scholar
Coles, K., Tomporowski, P. D. (2008). Effects of acute exercise on executive processing, short-term and long-term memory. Journal of Sports Sciences, 26(3), 333–344.
https://doi.org/10.1080/02640410701591417 Google Scholar
Craig, M., Dewar, M., Harris, M. A., Della Sala, S., Wolbers, T. (2016). Wakeful rest promotes the integration of spatial memories into accurate cognitive maps. Hippocampus, 26(2), 185–193.
https://doi.org/10.1002/hipo.22502 Google Scholar
Cryer, P. E. (1980). Physiology and pathophysiology of the human sympathoadrenal neuroendocrine system. New England Journal of Medicine, 303(8), 436–444.
https://doi.org/10.1056/NEJM198008213030806 Google Scholar
Davies, C. (1968). Limitations to the prediction of maximum oxygen intake from cardiac frequency measurements. Journal of Applied Physiology, 24(5), 700–706.
https://doi.org/10.1152/jappl.1968.24.5.700 Google Scholar
Etnier, J. L., Salazar, W., Landers, D. M., Petruzzello, S. J., Han, M., Nowell, P. (1997). The influence of physical fitness and exercise upon cognitive functioning: A meta-analysis. Journal of Sport and Exercise Psychology, 19(3), 249–277.
https://doi.org/10.1123/jsep.19.3.249 Google Scholar
Greenhouse, S. W., Geisser, S. (1959). On methods in the analysis of profile data. Psychometrika, 24(2), 95–112.
https://doi.org/10.1007/BF02289823 Google Scholar
Griffin, É. W., Mullally, S., Foley, C., Warmington, S. A., O’Mara, S. M., Kelly, Á. M. (2011). Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiology & Behavior, 104(5), 934–941.
https://doi.org/10.1016/j.physbeh.2011.06.005 Google Scholar
Hötting, K., Schickert, N., Kaiser, J., Röder, B., Schmidt-Kassow, M. (2016). The effects of acute physical exercise on memory, peripheral BDNF, and cortisol in young adults. Neural Plasticity, 2016, Article 6860573.
https://doi.org/10.1155/2016/6860573 Google Scholar
Hwang, J., Brothers, R. M., Castelli, D. M., Glowacki, E. M., Chen, Y. T., Salinas, M. M., . . . Calvert, H. G. (2016). Acute high-intensity exercise-induced cognitive enhancement and brain-derived neurotrophic factor in young, healthy adults. Neuroscience Letters, 630, 247–253.
https://doi.org/10.1016/j.neulet.2016.07.033 Google Scholar
Jaffery, A., Edwards, M. K., Loprinzi, P. D. (2018). The effects of acute exercise on cognitive function: Solomon experimental design. The Journal of Primary Prevention, 39(1), 37–46.
https://doi.org/10.1007/s10935-017-0498-z Google Scholar
JASP Team . (2018). JASP (Version 0.8.5).
https://jaspstats.org/ Google Scholar
Keyan, D., Bryant, R. A. (2017). Brief exercise enhances intrusive memories of traumatic stimuli. Neurobiology of Learning and Memory, 141, 9–13.
https://doi.org/10.1016/j.nlm.2017.03.012 Google Scholar
LaBar, K. S., Cabeza, R. (2006). Cognitive neuroscience of emotional memory. Nature Reviews: Neuroscience, 7(1), 54–64.
https://doi.org/10.1038/nrn1825 Google Scholar
Lambourne, K., Tomporowski, P. (2010). The effect of exercise-induced arousal on cognitive task performance: A meta-regression analysis. Brain Research, 1341, 12–24.
https://doi.org/10.1016/j.brainres.2010.03.091 Google Scholar
Lang, P. J., Bradley, M. M., Cuthbert, B. N. (1997). International affective picture system (IAPS): Technical manual and affective ratings. NIMH Center for the Study of Emotion and Attention.
https://www2.unifesp.br/dpsicobio/adap/instructions.pdf Google Scholar
Loprinzi, P. D., Blough, J., Crawford, L., Ryu, S., Zou, L., Li, H. (2019). The temporal effects of acute exercise on episodic memory function: Systematic review with meta-analysis. Brain Sciences, 9(4), Article 87.
https://doi.org/10.3390/brainsci9040087 Google Scholar
Loprinzi, P. D., Frith, E., Edwards, M. K. (2019). Exercise and emotional memory: A systematic review. Journal of Cognitive Enhancement, 3, 94–103.
https://doi.org/10.1007/s41465-018-0086-z Google Scholar
Loprinzi, P. D., Lovorn, A., Gilmore, J. (2021). Effects of exercise on explicit memory function: Incidental and intentional encoding may depend on exercise timing. Perceptual and Motor Skills, 128(2), 865–884.
https://doi.org/10.1177/0031512520979671 Google Scholar
Macmillan, N. A., Creelman, C. D. (2005). Detection theory: A user’s guide (2nd ed.). Lawrence Erlbaum.
Google Scholar
McGaugh, J. L. (1989). Involvement of hormonal and neuromodulatory systems in the regulation of memory storage. Annual Review of Neuroscience, 12(1), 255–287.
https://doi.org/10.1146/annurev.ne.12.030189.001351 Google Scholar
McGaugh, J. L. (2013). Making lasting memories: Remembering the significant. Proceedings of the National Academy of Sciences of the United States of America, 110(Suppl. 2), 10402–10407.
https://doi.org/10.1073/pnas.1301209110 Google Scholar
McGaugh, J. L., Roozendaal, B. (2002). Role of adrenal stress hormones in forming lasting memories in the brain. Current Opinion in Neurobiology, 12(2), 205–210.
https://doi.org/10.1016/S0959-4388(02)00306-9 Google Scholar
McMorris, T. (2016). Developing the catecholamines hypothesis for the acute exercise-cognition interaction in humans: Lessons from animal studies. Physiology & Behavior, 165, 291–299.
https://doi.org/10.1016/j.physbeh.2016.08.011 Google Scholar
McMorris, T., Collard, K., Corbett, J., Dicks, M., Swain, J. (2008). A test of the catecholamines hypothesis for an acute exercise–cognition interaction. Pharmacology Biochemistry and Behavior, 89(1), 106–115.
https://doi.org/10.1016/j.pbb.2007.11.007 Google Scholar
McMorris, T., Hale, B. J. (2012). Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: A meta-analytical investigation. Brain and Cognition, 80(3), 338–351.
https://doi.org/10.1016/j.bandc.2012.09.001 Google Scholar
Most, S. B., Kennedy, B. L., Petras, E. A. (2017). Evidence for improved memory from 5 minutes of immediate, post-encoding exercise among women. Cognitive Research: Principles and Implications, 2(1), 33.
https://doi.org/10.1186/s41235-017-0068-1 Google Scholar
Nielson, K. A., Radtke, R. C., Jensen, R. A. (1996). Arousal-induced modulation of memory storage processes in humans. Neurobiology of Learning and Memory, 66(2), 133–142.
https://doi.org/10.1006/nlme.1996.0054 Google Scholar
Okuda, S., Roozendaal, B., McGaugh, J. L. (2004). Glucocorticoid effects on object recognition memory require training-associated emotional arousal. Proceedings of the National Academy of Sciences of the United States of America, 101(3), 853–858.
https://doi.org/10.1073/pnas.0307803100 Google Scholar
Osgood, C. E. (1948). An investigation into the causes of retroactive interference. Journal of Experimental Psychology, 38(2), 132–154.
https://doi.org/10.1037/h0055753 Google Scholar
Peirce, J. W. (2007). PsychoPy—psychophysics software in Python. Journal of Neuroscience Methods, 162(1–2), 8–13.
https://doi.org/10.1016/j.jneumeth.2006.11.017 Google Scholar
Prakash, R. S., Voss, M. W., Erickson, K. I., Kramer, A. F. (2015). Physical activity and cognitive vitality. Annual Review of Psychology, 66, 769–797.
https://doi.org/10.1146/annurev-psych-010814-015249 Google Scholar
Quirarte, G. L., Roozendaal, B., McGaugh, J. L. (1997). Glucocorticoid enhancement of memory storage involves noradrenergic activation in the basolateral amygdala. Proceedings of the National Academy of Sciences of the United States of America, 94(25), 14048–14053.
https://doi.org/10.1073/pnas.94.25.14048 Google Scholar
Robergs, R. A., Landwehr, R. (2002). The surprising history of the” HRmax= 220-age” equation. Journal of Exercise Physiology Online, 5(2), 1–10.
https://eprints.qut.edu.au/96880/1/96880.pdf Google Scholar
Roig, M., Thomas, R., Mang, C. S., Snow, N. J., Ostadan, F., Boyd, L. A., Lundbye-Jensen, J. (2016). Time-dependent effects of cardiovascular exercise on memory. Exercise and Sport Sciences Reviews, 44(2), 81–88.
https://doi.org/10.1249/JES.0000000000000078 Google Scholar
Roozendaal, B. (2000). Glucocorticoids and the regulation of memory consolidation. Psychoneuroendocrinology, 25(3), 213–238.
https://doi.org/10.1016/S0306-4530(99)00058-X Google Scholar
Roozendaal, B., Okuda, S., Van der Zee, E. A., McGaugh, J. L. (2006). Glucocorticoid enhancement of memory requires arousal-induced noradrenergic activation in the basolateral amygdala. Proceedings of the National Academy of Sciences of the United States of America, 103(17), 6741–6746.
https://doi.org/10.1073/pnas.0601874103 Google Scholar
Sandi, C., Loscertales, M., Guaza, C. (1997). Experience-dependent facilitating effect of corticosterone on spatial memory formation in the water maze. European Journal of Neuroscience, 9(4), 637–642.
https://doi.org/10.1111/j.1460-9568.1997.tb01412.x Google Scholar
Segal, S. K., Cotman, C. W., Cahill, L. F. (2012). Exercise-induced noradrenergic activation enhances memory consolidation in both normal aging and patients with amnestic mild cognitive impairment. Journal of Alzheimer’s Disease, 32(4), 1011–1018.
https://doi.org/10.3233/JAD-2012-121078 Google Scholar
Soetens, E., Hueting, J., Casaer, S., D’Hooge, R. (1995). Effect of amphetamine on long-term retention of verbal material. Psychopharmacology, 119(2), 155–162.
https://doi.org/10.1007/BF02246156 Google Scholar
Stanislaw, H., Todorov, N. (1999). Calculation of signal detection theory measures. Behavior Research Methods, Instruments, & Computers, 31(1), 137–149.
https://doi.org/10.3758/BF03207704 Google Scholar
Sykes, K., Roberts, A. (2004). The Chester step test—A simple yet effective tool for the prediction of aerobic capacity. Physiotherapy, 90(4), 183–188.
https://doi.org/10.1016/j.physio.2004.03.008 Google Scholar
Wade, B., Loprinzi, P. D. (2018). The experimental effects of acute exercise on long-term emotional memory. Journal of Clinical Medicine, 7(12), 486.
https://doi.org/10.3390/jcm7120486 Google Scholar
Winter, B., Breitenstein, C., Mooren, F. C., Voelker, K., Fobker, M., Lechtermann, A., . . . Floel, A. (2007). High impact running improves learning. Neurobiology of Learning and Memory, 87(4), 597–609.
https://doi.org/10.1016/j.nlm.2006.11.003 Google Scholar
Yonelinas, A. P., Otten, L. J., Shaw, K. N., Rugg, M. D. (2005). Separating the brain regions involved in recollection and familiarity in recognition memory. Journal of Neuroscience, 25(11), 3002–3008.
https://doi.org/10.1523/JNEUROSCI.5295-04.2005 Google Scholar
Comments (0)