Relationships between GABA + and Glx concentrations with age and inhibition in healthy older adults

Andersson P, Li X, Persson J (2025) Hippocampal and prefrontal GABA and glutamate concentration contribute to component processes of working memory in aging. Cereb Cortex 35(5):bhaf105. https://doi.org/10.1093/cercor/bhaf105

Article  PubMed  PubMed Central  Google Scholar 

Andrés P, Guerrini C, Phillips LH, Perfect TJ (2008) Differential effects of aging on executive and automatic Inhibition. Dev Neuropsychol 33(2):101–123. https://doi.org/10.1080/87565640701884212

Article  PubMed  Google Scholar 

Aron AR (2011) From reactive to proactive and selective control: developing a richer model for stopping inappropriate responses. Biol Psychiatry 69(12):e55–e68. https://doi.org/10.1016/j.biopsych.2010.07.024

Article  PubMed  Google Scholar 

Aron AR, Robbins TW, Poldrack RA (2014) Inhibition and the right inferior frontal cortex: one decade on. Trends Cogn Sci 18(4):177–185. https://doi.org/10.1016/j.tics.2013.12.003

Article  PubMed  Google Scholar 

Aufhaus E, Weber-Fahr W, Sack M, Tunc-Skarka N, Oberthuer G, Hoerst M, Meyer-Lindenberg A, Boettcher U, Ende G (2013) Absence of changes in GABA concentrations with age and gender in the human anterior cingulate cortex: A MEGA-PRESS study with symmetric editing pulse frequencies for macromolecule suppression. Magn Reson Med 69(2):317–320. https://doi.org/10.1002/mrm.24257

Article  CAS  PubMed  Google Scholar 

Bannai H, Niwa F, Sakuragi S, Mikoshiba K (2020) Inhibitory synaptic transmission tuned by Ca2 + and glutamate through the control of GABAAR lateral diffusion dynamics. Dev Growth Differ 62(6):398–406. https://doi.org/10.1111/dgd.12667

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bi D, Wen L, Wu Z, Shen Y (2020) GABAergic dysfunction in excitatory and inhibitory (E/I) imbalance drives the pathogenesis of alzheimer’s disease. Alzheimer’s Dement 16(9):1312–1329. https://doi.org/10.1002/alz.12088

Article  Google Scholar 

Borella E, Delaloye C, Lecerf T, Renaud O, de Ribaupierre A (2009) Do age differences between young and older adults in inhibitory tasks depend on the degree of activation of information? Eur J Cogn Psychol 21(2–3):445–472. https://doi.org/10.1080/09541440802613997

Article  Google Scholar 

Burke SN, Barnes CA (2006) Neural plasticity in the ageing brain. Nat Rev Neurosci 7(1):30–40. https://doi.org/10.1038/nrn1809

Article  CAS  PubMed  Google Scholar 

Cassady K, Gagnon H, Lalwani P, Simmonite M, Foerster B, Park D, Peltier SJ, Petrou M, Taylor SF, Weissman DH, Seidler RD, Polk TA (2019) Sensorimotor network segregation declines with age and is linked to GABA and to sensorimotor performance. NeuroImage 186:234–244. https://doi.org/10.1016/j.neuroimage.2018.11.008

Article  CAS  PubMed  Google Scholar 

Chan KL, Puts NA, Schär M, Barker PB, Edden RA (2016) HERMES: Hadamard encoding and reconstruction of MEGA-edited spectroscopy. Magn Reson Med 76(1):11–19. https://doi.org/10.1002/mrm.26233

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng C-H, Niddam DM, Hsu S-C, Liu C-Y, Tsai S-Y (2017) Resting GABA concentration predicts inhibitory control during an auditory Go-Nogo task. Exp Brain Res 235(12):3833–3841. https://doi.org/10.1007/s00221-017-5101-6

Article  CAS  PubMed  Google Scholar 

Colcombe SJ, Kramer AF, Erickson KI, Scalf P (2005) The implications of cortical recruitment and brain morphology for individual differences in inhibitory function in aging humans. Psychol Aging 20(3):363–375. https://doi.org/10.1037/0882-7974.20.3.363

Article  PubMed  Google Scholar 

de la Vega A, Brown MS, Snyder HR, Singel D, Munakata Y, Banich MT (2014) Individual differences in the balance of GABA to glutamate in pFC predict the ability to select among competing options. J Cogn Neurosci 26(11):2490–2502. https://doi.org/10.1162/jocn_a_00655

Article  PubMed  PubMed Central  Google Scholar 

Diamond A (2013) Executive functions. Ann Rev Psychol 64(1):135–168. https://doi.org/10.1146/annurev-psych-113011-143750

Article  Google Scholar 

Ding X-Q, Maudsley AA, Sabati M, Sheriff S, Schmitz B, Schütze M, Bronzlik P, Kahl KG, Lanfermann H (2016) Physiological neuronal decline in healthy aging human brain — An in vivo study with MRI and short echo-time whole-brain 1H MR spectroscopic imaging. NeuroImage 137:45–51. https://doi.org/10.1016/j.neuroimage.2016.05.014

Article  PubMed  Google Scholar 

Duncan NW, Wiebking C, Northoff G (2014) Associations of regional GABA and glutamate with intrinsic and extrinsic neural activity in humans—a review of multimodal imaging studies. Neurosci Biobehav Rev 47:36–52. https://doi.org/10.1016/j.neubiorev.2014.07.016

Article  CAS  PubMed  Google Scholar 

Eriksen BA, Eriksen CW (1974) Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept Psychophys 16(1):143–149. https://doi.org/10.3758/BF03203267

Article  Google Scholar 

Fernandez-Duque D, Black SE (2006) Attentional networks in normal aging and alzheimer’s disease. Neuropsychology 20(2):133–143. https://doi.org/10.1037/0894-4105.20.2.133

Article  PubMed  Google Scholar 

Fong MC-M, Law TS-T, Ma MK-H, Hui NY, Wang WS (2021) Can Inhibition deficit hypothesis account for age-related differences in semantic fluency? Converging evidence from Stroop color and word test and an ERP flanker task. Brain Lang 218:104952. https://doi.org/10.1016/j.bandl.2021.104952

Article  PubMed  Google Scholar 

Gao F, Edden RAE, Li M, Puts NAJ, Wang G, Liu C, Zhao B, Wang H, Bai X, Zhao C, Wang X, Barker PB (2013) Edited magnetic resonance spectroscopy detects an age-related decline in brain GABA levels. NeuroImage 78:75–82. https://doi.org/10.1016/j.neuroimage.2013.04.012

Article  CAS  PubMed  Google Scholar 

Golden C (1978) Stroop color and word test. Stoelting Company

Grachev ID, Apkarian AV (2001) Aging alters regional multichemical profile of the human brain: an in vivo1H-MRS study of young versus middle-aged subjects. J Neurochem 76(2):582–593. https://doi.org/10.1046/j.1471-4159.2001.00026.x

Article  CAS  PubMed  Google Scholar 

Grandjean J, Collette F (2011) Influence of response prepotency strength, general working memory resources, and specific working memory load on the ability to inhibit predominant responses: A comparison of young and elderly participants. Brain Cogn 77(2):237–247. https://doi.org/10.1016/j.bandc.2011.08.004

Article  PubMed  Google Scholar 

Hedge C, Powell G, Sumner P (2018) The reliability paradox: why robust cognitive tasks do not produce reliable individual differences. Behav Res Methods 50(3):1166–1186. https://doi.org/10.3758/s13428-017-0935-1

Article  PubMed  Google Scholar 

Hermans L, Leunissen I, Pauwels L, Cuypers K, Peeters R, Puts NAJ, Edden RAE, Swinnen SP (2018) Brain GABA levels are associated with inhibitory control deficits in older adults. J Neurosci 38(36):7844. https://doi.org/10.1523/JNEUROSCI.0760-18.2018

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hsieh S, Fang W (2012) Elderly adults through compensatory responses can be just as capable as young adults in inhibiting the flanker influence. Biol Psychol 90(2):113–126. https://doi.org/10.1016/j.biopsycho.2012.03.006

Article  PubMed  Google Scholar 

Isaacson Jeffry S, Scanziani M (2011) How Inhibition shapes cortical activity. Neuron 72(2):231–243. https://doi.org/10.1016/j.neuron.2011.09.027

Article  CAS  PubMed  Google Scholar 

Kaiser LG, Schuff N, Cashdollar N, Weiner MW (2005) Age-related glutamate and glutamine concentration changes in normal human brain: 1H MR spectroscopy study at 4 T. Neurobiol Aging 26(5):665–672. https://doi.org/10.1016/j.neurobiolaging.2004.07.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koizumi A, Lau H, Shimada Y, Kondo HM (2018) The effects of neurochemical balance in the anterior cingulate cortex and dorsolateral prefrontal cortex on volitional control under irrelevant distraction. Conscious Cogn 59:104–111. https://doi.org/10.1016/j.concog.2018.01.001

Article  PubMed 

Comments (0)

No login
gif