T. Ma, Y. Xia, T. Inagaki, S. Tsuchikawa, Nondestructive and fast method of mapping the distribution of the soluble solids content and pH in Kiwifruit using object rotation near-infrared hyperspectral imaging approach. Postharvest Biol. Technol. 174, 111440 (2021). https://doi.org/10.1016/j.postharvbio.2020.111440
Y. Peng, R. Lu, Prediction of Apple fruit firmness and soluble solids content using characteristics of multispectral scattering images. J. Food Eng. 82(2), 142–152 (2007). https://doi.org/10.1016/j.jfoodeng.2006.12.027
P. Penchaiya, E. Bobelyn, B. Verlinden, B. Nicolai, W. Saeys, Non-destructive measurement of firmness and soluble solids content in bell pepper using NIR spectroscopy. J. Food Eng. 94(3–4), 267–273 (2009). https://doi.org/10.1016/j.jfoodeng.2009.03.018
J.B. Li, Y.K. Peng, L.P. Chen, W.Q. Huang, (2014). Near-infrared hyperspectral imaging combined with CARS algorithm to quantitatively determine soluble solids content in Ya pear. Guang Pu Xue Yu Guang Pu Fen Xi, 34(5), 1264–1269. [In Chinese]. PMID: 25095419
M. Kim, (2013). 3D graphics techniques for capturing and inspecting hyperspectral appearance. In Proceedings of the 2013 International Symposium on Ubiquitous Virtual Reality (ISUVR) (pp. 15–18). IEEE. https://doi.org/10.1109/ISUVR.2013.15
A. Ibrahim, A. Alghannam, A.A. Eissa, F. Firtha, T. Kaszab, Z. Kovacs, L. Helyes, Preliminary study for inspecting moisture content, dry matter content, and firmness parameters of two date cultivars using an NIR hyperspectral imaging system. Front. Bioeng. Biotechnol. 9, 720630 (2021). https://doi.org/10.3389/fbioe.2021.720630
S. Vignati, A. Tugnolo, V. Giovenzana, A. Pampuri, A. Casson, R. Guidetti, R. Beghi, Hyperspectral imaging for fresh-cut fruit and vegetable quality assessment: basic concepts and applications. Appl. Sci. 13(17), 9740 (2023). https://doi.org/10.3390/app13179740
C. Zhang, C. Guo, F. Liu, W. Kong, Y. He, B. Lou, Hyperspectral imaging analysis for ripeness evaluation of strawberry with support vector machine. J. Food Eng. 179, 11–18 (2016). https://doi.org/10.1016/j.jfoodeng.2016.01.002
J.A. Abbott, (2004). Textural quality assessment for fresh fruits and vegetables. In Advances in Experimental Medicine and Biology (Vol. 542, pp. 265–279). Springer. https://doi.org/10.1007/978-1-4419-9090-7_19
Y. Lu, Y. Huang, R. Lu, Innovative hyperspectral imaging-based techniques for quality evaluation of fruits and vegetables: A review. Appl. Sci. 7(2), 189 (2017). https://doi.org/10.3390/app7020189
F. Mendoza, R.F. Lu, D. Ariana, H.Y. Cen, B. Bailey, Integrated spectral and image analysis of hyperspectral scattering data for prediction of Apple fruit firmness and soluble solids content. Postharvest Biol. Technol. 62(2), 149–160 (2011). https://doi.org/10.1016/j.postharvbio.2011.05.009
F. Mendoza, R.F. Lu, H.Y. Cen, Grading of apples based on firmness and soluble solids content using vis/swnir spectroscopy and spectral scattering techniques. J. Food Eng. 125, 59–68 (2014). https://doi.org/10.1016/j.jfoodeng.2013.10.022
A.F. Goetz, G. Vane, J.E. Solomon, B.N. Rock, Imaging spectrometry for Earth remote sensing. Science. 228(4704), 1147–1153 (1985). https://doi.org/10.1126/science.228.4704.1147
B. Lu, P. Dao, J. Liu, Y. He, J. Shang, Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sens. 12(16), 2659 (2020). https://doi.org/10.3390/rs12162659
R. Cui, H. Yu, T. Xu, X. Xing, X. Cao, K. Yan, J. Chen, Deep learning in medical hyperspectral images: A review. Sensors. 22(24), 9790 (2022). https://doi.org/10.3390/s22249790
J. Bøtker, J.X. Wu, J. Rantanen, (2019). Hyperspectral imaging as a part of pharmaceutical product design. In Data Handling in Science and Technology (Vol. 32, pp. 567–581). Elsevier. https://doi.org/10.1016/B978-0-444-63977-6.00022-5
M.B. Stuart, A.J.S. McGonigle, J.R. Willmott, Hyperspectral imaging in environmental monitoring: A review of recent developments and technological advances in compact field deployable systems. Sensors. 19(14), 3071 (2019). https://doi.org/10.3390/s19143071
E. Bedini, The use of hyperspectral remote sensing for mineral exploration: A review. J. Hyperspectral Remote Sens. 7, 189–211 (2017). https://doi.org/10.29150/jhrs.v7.4
R. Siche, V. Mantilla, R.D. Aredo, V. Velásquez, L. Villa, E., R. Quevedo, Evaluation of food quality and safety with hyperspectral imaging (HSI). Food Eng. Rev. 8, 1–17 (2016). https://doi.org/10.1007/s12393-015-9137-8
G. Elmasry, M. Kamruzzaman, D.-W. Sun, P. Allen, Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: A review. Crit. Rev. Food Sci. Nutr. 52(11), 999–1023 (2012). https://doi.org/10.1080/10408398.2010.543495
B. Fei, (2019). Hyperspectral imaging in medical applications. In Data Handling in Science and Technology (Vol. 32, pp. 523–565). Elsevier. https://doi.org/10.1016/B978-0-444-63977-6.00021-3
G. Elmasry, S. Nakauchi, Image analysis operations applied to hyperspectral images for non-invasive sensing of food quality – A comprehensive review. Biosyst. Eng. 142, 53–82 (2016). https://doi.org/10.1016/j.biosystemseng.2015.11.009
B. Wang, J. Sun, L. Xia, J. Liu, Z. Wang, P. Li, X. Sun, The applications of hyperspectral imaging technology for agricultural products quality analysis: A review. Food Reviews Int. 39(2), 1043–1062 (2021). https://doi.org/10.1080/87559129.2021.1929297
D. Báscones, C. Gonzalez, D. Mozos, Parallel implementation of the CCSDS 1.2.3 standard for hyperspectral lossless compression. Remote Sens. 9(10), 973 (2017). https://doi.org/10.3390/rs9100973
P.M. Mehl, Y.R. Chen, M.S. Kim, D.E. Chan, Development of hyperspectral imaging technique for the detection of Apple surface defects and contaminations. J. Food Eng. 61(1), 67–81 (2004). https://doi.org/10.1016/S0260-8774(03)00188-2
Y. Garini, I.T. Young, G. McNamara, Spectral imaging, principles and applications. Cytometry Part. A 69A(8), 735–747 (2006). https://doi.org/10.1002/cyto.a.20311
W. Li, C. Jiang, Y. Chen, J. Hyyppä, L. Tang, S.-W. Wang, A liquid crystal tunable filter-based hyperspectral lidar system and its application on vegetation red edge detection. IEEE Geosci. Remote Sens. Lett. 15(12), 1887–1891 (2018). https://doi.org/10.1109/LGRS.2018.2870143
B. Li, Z. Han, Q. Wang, Z. Sun, Y. Liu, Study on qualitative impact damage of loquats using hyperspectral technology coupled with texture features. Foods. 11(16), 2444 (2022). https://doi.org/10.3390/foods11162444
J. Qin, K. Chao, M.S. Kim, R. Lu, T.F. Burks, Hyperspectral and multispectral imaging for evaluating food safety and quality: A review. J. Food Eng. 118, 157–171 (2013). https://doi.org/10.1016/j.jfoodeng.2013.04.001
R. Lu, (2003). Imaging spectroscopy for assessing internal quality of Apple fruit. ASAE Annual International Meeting, Paper No. 036012, Las Vegas, Nevada. https://doi.org/10.1117/12.751937
G. ElMasry, N. Wang, C. Vigneault, J. Qiao, A. ElSayed, Early detection of Apple bruises on different background colors using hyperspectral imaging. LWT - Food Sci. Technol. 41(2), 337–345 (2008). https://doi.org/10.1016/j.lwt.2007.02.022
Y. Xiang, Q. Chen, Z. Su, L. Zhang, Z. Chen, G. Zhou, Z. Yao, Q. Xuan, Y. Cheng, Deep learning and hyperspectral images based tomato soluble solids content and firmness Estimation. Front. Plant Sci. 13, 860656 (2022). https://doi.org/10.3389/fpls.2022.860656
Z. Su, C. Zhang, T. Yan, J. Zhu, Y. Zeng, X. Lu, P. Gao, L. Feng, L. He, L. Fan, Application of hyperspectral imaging for maturity and soluble solids content determination of strawberry with deep learning approaches. Front. Plant Sci. 12, 736334 (2021). https://doi.org/10.3389/fpls.2021.736334
C. Li, M. He, Z. Cai, H. Qi, J. Zhang, C. Zhang, Hyperspectral imaging with machine learning approaches for assessing soluble solids content of tribute citru. Foods. 12(2), 247 (2023). https://doi.org/10.3390/foods12020247
B. Yang, Y. Gao, Q. Yan, L. Qi, Y. Zhu, B. Wang, Estimation method of soluble solid content in Peach based on deep features of hyperspectral imagery. Sensors. 20(18), 5021 (2020). https://doi.org/10.3390/s20185021
A. Mokari, S. Guo, T. Bocklitz, Exploring the steps of infrared (IR) spectral analysis: Pre-processing, (classical) data modelling, and deep learning. Molecules. 28(19), 6886 (2023). https://doi.org/10.3390/molecules28196886
R.A.V. Rossel, ParLeS: software for chemometric analysis of spectroscopic data. Chemometr. Intell. Lab. Syst. 90(1), 72–83 (2008). https://doi.org/10.1016/j.chemolab.2007.06.006
M. Barberio, T. Collins, V. Bencteux, R. Nkusi, E. Felli, M. Viola, J. Marescaux, A. Hostettler, M. Diana, Deep learning analysis of in vivo hyperspectral images for automated intraoperative nerve detection. Diagnostics. 11(8), 1402 (2021). https://doi.org/10.3390/diagnostics11081508
A. Zaid, N. Abu-Khalaf, S. Mudalal, M. Petracci, Differentiation between normal and white striped Turkey breasts by visible/near infrared spectroscopy and multivariate data analysis. Food Sci. Anim. Resour. 40(4), 535–548 (2019). https://doi.org/10.5851/kosfa.2019.e88
J. Zhang, B. Rivard, D.M. Rogge, The successive projection algorithm (SPA), an algorithm with a Spatial constraint for the automatic search of endmembers in hyperspectral data. Sensors. 8(2), 1321–1
Comments (0)