Recent trends in deep learning and hyperspectral imaging for fruit quality analysis: an overview

T. Ma, Y. Xia, T. Inagaki, S. Tsuchikawa, Nondestructive and fast method of mapping the distribution of the soluble solids content and pH in Kiwifruit using object rotation near-infrared hyperspectral imaging approach. Postharvest Biol. Technol. 174, 111440 (2021). https://doi.org/10.1016/j.postharvbio.2020.111440

Article  Google Scholar 

Y. Peng, R. Lu, Prediction of Apple fruit firmness and soluble solids content using characteristics of multispectral scattering images. J. Food Eng. 82(2), 142–152 (2007). https://doi.org/10.1016/j.jfoodeng.2006.12.027

Article  Google Scholar 

P. Penchaiya, E. Bobelyn, B. Verlinden, B. Nicolai, W. Saeys, Non-destructive measurement of firmness and soluble solids content in bell pepper using NIR spectroscopy. J. Food Eng. 94(3–4), 267–273 (2009). https://doi.org/10.1016/j.jfoodeng.2009.03.018

Article  Google Scholar 

J.B. Li, Y.K. Peng, L.P. Chen, W.Q. Huang, (2014). Near-infrared hyperspectral imaging combined with CARS algorithm to quantitatively determine soluble solids content in Ya pear. Guang Pu Xue Yu Guang Pu Fen Xi, 34(5), 1264–1269. [In Chinese]. PMID: 25095419

M. Kim, (2013). 3D graphics techniques for capturing and inspecting hyperspectral appearance. In Proceedings of the 2013 International Symposium on Ubiquitous Virtual Reality (ISUVR) (pp. 15–18). IEEE. https://doi.org/10.1109/ISUVR.2013.15

A. Ibrahim, A. Alghannam, A.A. Eissa, F. Firtha, T. Kaszab, Z. Kovacs, L. Helyes, Preliminary study for inspecting moisture content, dry matter content, and firmness parameters of two date cultivars using an NIR hyperspectral imaging system. Front. Bioeng. Biotechnol. 9, 720630 (2021). https://doi.org/10.3389/fbioe.2021.720630

Article  Google Scholar 

S. Vignati, A. Tugnolo, V. Giovenzana, A. Pampuri, A. Casson, R. Guidetti, R. Beghi, Hyperspectral imaging for fresh-cut fruit and vegetable quality assessment: basic concepts and applications. Appl. Sci. 13(17), 9740 (2023). https://doi.org/10.3390/app13179740

Article  Google Scholar 

C. Zhang, C. Guo, F. Liu, W. Kong, Y. He, B. Lou, Hyperspectral imaging analysis for ripeness evaluation of strawberry with support vector machine. J. Food Eng. 179, 11–18 (2016). https://doi.org/10.1016/j.jfoodeng.2016.01.002

Article  Google Scholar 

J.A. Abbott, (2004). Textural quality assessment for fresh fruits and vegetables. In Advances in Experimental Medicine and Biology (Vol. 542, pp. 265–279). Springer. https://doi.org/10.1007/978-1-4419-9090-7_19

Y. Lu, Y. Huang, R. Lu, Innovative hyperspectral imaging-based techniques for quality evaluation of fruits and vegetables: A review. Appl. Sci. 7(2), 189 (2017). https://doi.org/10.3390/app7020189

Article  ADS  Google Scholar 

F. Mendoza, R.F. Lu, D. Ariana, H.Y. Cen, B. Bailey, Integrated spectral and image analysis of hyperspectral scattering data for prediction of Apple fruit firmness and soluble solids content. Postharvest Biol. Technol. 62(2), 149–160 (2011). https://doi.org/10.1016/j.postharvbio.2011.05.009

Article  Google Scholar 

F. Mendoza, R.F. Lu, H.Y. Cen, Grading of apples based on firmness and soluble solids content using vis/swnir spectroscopy and spectral scattering techniques. J. Food Eng. 125, 59–68 (2014). https://doi.org/10.1016/j.jfoodeng.2013.10.022

Article  Google Scholar 

A.F. Goetz, G. Vane, J.E. Solomon, B.N. Rock, Imaging spectrometry for Earth remote sensing. Science. 228(4704), 1147–1153 (1985). https://doi.org/10.1126/science.228.4704.1147

Article  ADS  Google Scholar 

B. Lu, P. Dao, J. Liu, Y. He, J. Shang, Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sens. 12(16), 2659 (2020). https://doi.org/10.3390/rs12162659

Article  ADS  Google Scholar 

R. Cui, H. Yu, T. Xu, X. Xing, X. Cao, K. Yan, J. Chen, Deep learning in medical hyperspectral images: A review. Sensors. 22(24), 9790 (2022). https://doi.org/10.3390/s22249790

Article  ADS  Google Scholar 

J. Bøtker, J.X. Wu, J. Rantanen, (2019). Hyperspectral imaging as a part of pharmaceutical product design. In Data Handling in Science and Technology (Vol. 32, pp. 567–581). Elsevier. https://doi.org/10.1016/B978-0-444-63977-6.00022-5

M.B. Stuart, A.J.S. McGonigle, J.R. Willmott, Hyperspectral imaging in environmental monitoring: A review of recent developments and technological advances in compact field deployable systems. Sensors. 19(14), 3071 (2019). https://doi.org/10.3390/s19143071

Article  ADS  Google Scholar 

E. Bedini, The use of hyperspectral remote sensing for mineral exploration: A review. J. Hyperspectral Remote Sens. 7, 189–211 (2017). https://doi.org/10.29150/jhrs.v7.4

Article  Google Scholar 

R. Siche, V. Mantilla, R.D. Aredo, V. Velásquez, L. Villa, E., R. Quevedo, Evaluation of food quality and safety with hyperspectral imaging (HSI). Food Eng. Rev. 8, 1–17 (2016). https://doi.org/10.1007/s12393-015-9137-8

Article  Google Scholar 

G. Elmasry, M. Kamruzzaman, D.-W. Sun, P. Allen, Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: A review. Crit. Rev. Food Sci. Nutr. 52(11), 999–1023 (2012). https://doi.org/10.1080/10408398.2010.543495

Article  Google Scholar 

B. Fei, (2019). Hyperspectral imaging in medical applications. In Data Handling in Science and Technology (Vol. 32, pp. 523–565). Elsevier. https://doi.org/10.1016/B978-0-444-63977-6.00021-3

G. Elmasry, S. Nakauchi, Image analysis operations applied to hyperspectral images for non-invasive sensing of food quality – A comprehensive review. Biosyst. Eng. 142, 53–82 (2016). https://doi.org/10.1016/j.biosystemseng.2015.11.009

Article  Google Scholar 

B. Wang, J. Sun, L. Xia, J. Liu, Z. Wang, P. Li, X. Sun, The applications of hyperspectral imaging technology for agricultural products quality analysis: A review. Food Reviews Int. 39(2), 1043–1062 (2021). https://doi.org/10.1080/87559129.2021.1929297

Article  Google Scholar 

D. Báscones, C. Gonzalez, D. Mozos, Parallel implementation of the CCSDS 1.2.3 standard for hyperspectral lossless compression. Remote Sens. 9(10), 973 (2017). https://doi.org/10.3390/rs9100973

Article  ADS  Google Scholar 

P.M. Mehl, Y.R. Chen, M.S. Kim, D.E. Chan, Development of hyperspectral imaging technique for the detection of Apple surface defects and contaminations. J. Food Eng. 61(1), 67–81 (2004). https://doi.org/10.1016/S0260-8774(03)00188-2

Article  Google Scholar 

Y. Garini, I.T. Young, G. McNamara, Spectral imaging, principles and applications. Cytometry Part. A 69A(8), 735–747 (2006). https://doi.org/10.1002/cyto.a.20311

Article  Google Scholar 

W. Li, C. Jiang, Y. Chen, J. Hyyppä, L. Tang, S.-W. Wang, A liquid crystal tunable filter-based hyperspectral lidar system and its application on vegetation red edge detection. IEEE Geosci. Remote Sens. Lett. 15(12), 1887–1891 (2018). https://doi.org/10.1109/LGRS.2018.2870143

Article  Google Scholar 

B. Li, Z. Han, Q. Wang, Z. Sun, Y. Liu, Study on qualitative impact damage of loquats using hyperspectral technology coupled with texture features. Foods. 11(16), 2444 (2022). https://doi.org/10.3390/foods11162444

Article  Google Scholar 

J. Qin, K. Chao, M.S. Kim, R. Lu, T.F. Burks, Hyperspectral and multispectral imaging for evaluating food safety and quality: A review. J. Food Eng. 118, 157–171 (2013). https://doi.org/10.1016/j.jfoodeng.2013.04.001

Article  Google Scholar 

R. Lu, (2003). Imaging spectroscopy for assessing internal quality of Apple fruit. ASAE Annual International Meeting, Paper No. 036012, Las Vegas, Nevada. https://doi.org/10.1117/12.751937

Chapter  Google Scholar 

G. ElMasry, N. Wang, C. Vigneault, J. Qiao, A. ElSayed, Early detection of Apple bruises on different background colors using hyperspectral imaging. LWT - Food Sci. Technol. 41(2), 337–345 (2008). https://doi.org/10.1016/j.lwt.2007.02.022

Article  Google Scholar 

Y. Xiang, Q. Chen, Z. Su, L. Zhang, Z. Chen, G. Zhou, Z. Yao, Q. Xuan, Y. Cheng, Deep learning and hyperspectral images based tomato soluble solids content and firmness Estimation. Front. Plant Sci. 13, 860656 (2022). https://doi.org/10.3389/fpls.2022.860656

Article  Google Scholar 

Z. Su, C. Zhang, T. Yan, J. Zhu, Y. Zeng, X. Lu, P. Gao, L. Feng, L. He, L. Fan, Application of hyperspectral imaging for maturity and soluble solids content determination of strawberry with deep learning approaches. Front. Plant Sci. 12, 736334 (2021). https://doi.org/10.3389/fpls.2021.736334

Article  Google Scholar 

C. Li, M. He, Z. Cai, H. Qi, J. Zhang, C. Zhang, Hyperspectral imaging with machine learning approaches for assessing soluble solids content of tribute citru. Foods. 12(2), 247 (2023). https://doi.org/10.3390/foods12020247

Article  Google Scholar 

B. Yang, Y. Gao, Q. Yan, L. Qi, Y. Zhu, B. Wang, Estimation method of soluble solid content in Peach based on deep features of hyperspectral imagery. Sensors. 20(18), 5021 (2020). https://doi.org/10.3390/s20185021

Article  ADS  Google Scholar 

A. Mokari, S. Guo, T. Bocklitz, Exploring the steps of infrared (IR) spectral analysis: Pre-processing, (classical) data modelling, and deep learning. Molecules. 28(19), 6886 (2023). https://doi.org/10.3390/molecules28196886

Article  Google Scholar 

R.A.V. Rossel, ParLeS: software for chemometric analysis of spectroscopic data. Chemometr. Intell. Lab. Syst. 90(1), 72–83 (2008). https://doi.org/10.1016/j.chemolab.2007.06.006

Article  Google Scholar 

M. Barberio, T. Collins, V. Bencteux, R. Nkusi, E. Felli, M. Viola, J. Marescaux, A. Hostettler, M. Diana, Deep learning analysis of in vivo hyperspectral images for automated intraoperative nerve detection. Diagnostics. 11(8), 1402 (2021). https://doi.org/10.3390/diagnostics11081508

Article  Google Scholar 

A. Zaid, N. Abu-Khalaf, S. Mudalal, M. Petracci, Differentiation between normal and white striped Turkey breasts by visible/near infrared spectroscopy and multivariate data analysis. Food Sci. Anim. Resour. 40(4), 535–548 (2019). https://doi.org/10.5851/kosfa.2019.e88

Article  Google Scholar 

J. Zhang, B. Rivard, D.M. Rogge, The successive projection algorithm (SPA), an algorithm with a Spatial constraint for the automatic search of endmembers in hyperspectral data. Sensors. 8(2), 1321–1

Comments (0)

No login
gif