R.M. Digilov, Flexural vibration test of a cantilever beam with a force sensor: fast determination of young’s modulus. Eur. J. Phys. 29, 589 (2008). https://doi.org/10.1088/0143-0807/29/3/018
R.M. Digilov, H. Abramovich, Flexural vibration test of a beam elastically restrained at one end: A new approach for Young’s modulus determination. Adv. Mater. Sci. Eng. 329530 (2013)., https://doi.org/10.1155/2013/329530
X. Kang, C.J. Tay, C. Quan, X. He, Evaluation of young’s modulus of a vibrating beam by optical method. Opt. Eng. 42, 10 (2003). https://doi.org/10.1117/1.1602089
L. Barboni, G.R. Gillich, C.P. Chioncel, C.O. Hamat, I.C. Mituletu, A method to precise determine the young’s modulus from dynamic measurements. IOP Conf. Ser. Mater. Sci. Eng. 416, 012063 (2018). https://doi.org/10.1088/1757-899X/416/1/012063
P. Antunes, H. Lima, J. Monteiro, P.S. André, Elastic constant measurement for standard and photosensitive single mode optical fibres. Microw. Opt. Technol. Lett. 50, 2467 (2008). https://doi.org/10.1002/mop.23660
F. El-Diasty, Theory and measurement of young’s modulus radial profiles of bent single-mode optical fibers with the multiple-beam interference technique. J. Opt. Soc. Am. A. 18, 1171 (2001). https://doi.org/10.1364/JOSAA.18.001171
T.Z.N. Sokkar, M.A. Shams El-Din, A.S. El-Tawargy, On young’s modulus profile across anisotropic nonhomogeneous polymeric fibre using automatic transverse interferometric method. Opt. Lasers Eng. 50, 1223 (2012). https://doi.org/10.1016/j.optlaseng.2012.03.017
J. Huether, P. Rupp, I. Kohlschreiber, K.A. Weidenmann, An enhanced method to determine the young’s modulus of technical single fibres by means of high resolution digital image correlation. Meas. Sci. Technol. 29, 045601 (2018). https://doi.org/10.1088/1361-6501/aaa0bb
P. Li et al., A nondestructive measurement method of optical fiber young’s modulus based on OFDR sensors 22, 1450 (2022). https://www.mdpi.com/1424-8220/22/4/1450
P. Roy Chaudhuri, S. Pradhan, Fiber cantilever Deflection magnetometer in Fabry-Perot multi-mirror host for detection of ˜mt field: experimental demonstration and modeling. Optik. 186, 99 (2019). https://doi.org/10.1016/j.ijleo.2019.04.033
P. Roy Chaudhuri, I. Sharma, Determination of polarization properties of piezoelectric nanocomposite particles (BiFe0.9Co0.1O3) using fiber-optic cantilever beam Deflection approach. J. Opt. 50, 611 (2021). https://doi.org/10.1007/s12596-021-00741-8
I. Sharma, P. Roy Chaudhuri, A new approach to sensing low electric field using optical fibers’ beam-deflection configuration with BiFe0.9Co0.1O3 nanoparticles as probe and determination of polarisation opt. Fiber Technol. 62, 102472 (2021). https://doi.org/10.1016/j.yofte.2021.102472
I. Sharma, P. Roy Chaudhuri, Electric field sensing and polarisation measurement using advanced multi-pass interrogation type fiber-optic beam Deflection probe. Opt. Fiber Technol. 81, 103484 (2023). https://doi.org/10.1016/j.yofte.2023.103484
I. Sharma, P. Roy Chaudhuri, Demonstration of mode-switching in a few-mode fiber using electric field controlled dynamic Off-Set coupling. J. Lightwave Technol. 1–8 (2024). https://doi.org/10.1109/JLT.2024.3370846
A. Agoston, F. Keplinger, B. Jakoby, Evaluation of a vibrating micromachined cantilever sensor for measuring the viscosity of complex organic liquids. Sens. Actuators Phys. 82, 123-124 (2005). https://doi.org/10.1016/j.sna.2005.02.020
I. Goubaidoulline, J. Reuber, F. Merz, D. Johannsmann, Simultaneous determination of density and viscosity of liquids based on quartz-crystal resonators covered with nanoporous alumina. J. Appl. Phys. 98, 014901 (2005). https://doi.org/10.1063/1.1942646
C. Riesch, E.K. Reichel, F. Keplinger, B. Jakoby, Characterizing vibrating cantilevers for liquid viscosity and density sensing. J. Sens. 2008, 697062 (2008). https://doi.org/10.1155/2008/697062
T.L. Wilson, G.A. Campbell, R. Mutharasan, Viscosity and density values from excitation level response of piezoelectric-excited cantilever sensors. Sens. Actuators Phys. 138, 44 (2007). https://doi.org/10.1016/j.sna.2007.04.050
P.I. Oden, G.Y. Chen, R.A. Steele, R.J. Warmack, T. Thundat, Viscous Drag Measurements Utilizing Microfabricated Cantilevers Appl. Phys. Lett. 68, 3814 (1996). https://doi.org/10.1063/1.116626
T.K. Barik, P. Roy Chaudhuri, A. Roy, S. Kar, Probing liquid surface waves, liquid properties and liquid films with light diffraction. Meas. Sci. Technol. 17, 1553 (2006). https://doi.org/10.1088/0957-0233/17/6/037
C. Bergaud, L. Nicu, Viscosity measurements based on experimental investigations of composite cantilever beam eigenfrequencies in viscous media. Rev. Sci. Instrum. 71, 2487 (2000). https://doi.org/10.1063/1.1150640
W.Y. Shih, X. Li, H. Gu, W.-H. Shih, I.A. Aksay, Simultaneous liquid viscosity and density determination with piezoelectric unimorph cantilevers. J. Appl. Phys. 89, 1497 (2001). https://doi.org/10.1063/1.1287606
G. Chen, M.M. Alam, Y. Zhou, Dependence of added mass on cylinder cross-sectional geometry and orientation. J. Fluids Struct. 99, 103142 (2020). https://doi.org/10.1016/j.jfluidstructs.2020.103142
M.A. Mahmoud, Validity and accuracy of resonance shift prediction formulas for microcantilevers: A review and comparative study. Crit. Rev. Solid State Mater. Sci., 41(5), 386-429 2016/09/02 2016, https://doi.org/10.1080/10408436.2016.1142858
J. Qian, P. Jia, Q. Ren, H. Liu, L. Qin, J. Xiong, An accelerometer based on all silica in-line fiber fabry-perot etalon for high temperature up to 800°C, Micromachines, 13(4), 548 (2022) [Online]. Available: https://www.mdpi.com/2072-666X/13/4/548
K. Vikestad, J.K. Vandiver, C.M. Larsen, Added mass and oscillation frequency for a circular cylinder subjected to vortex-induced vibrations and external disturbance, Journal of Fluids and Structures, 14, 1071-1088 (2000) https://doi.org/10.1006/jfls.2000.0308
L.D. Landau, E.M. Lifshitz, CHAPTER II - VISCOUS FLUIDS, in Fluid Mechanics (Second Edition), L. D. Landau and E. M. Lifshitz Eds.: Pergamon, 1987, pp. 44–94
C. Solomons, M.S. White, Oscillating plate viscometry. Part 1.—Theoretical principles. Trans. Faraday Soc. 65(0), 305–315 (1969). 10.1039/TF9696500305 volhttps://doi.org/10.1039/TF9696500305
S.N.H. Syuhri, H. Zare-Behtash, A. Cammarano, investigating the influence of fluid-structure interactions on nonlinear system identification, Vibration, vol. 3, no. 4, pp. 521–544, 2020. [Online]. Available: https://www.mdpi.com/2571-631X/3/4/32
P.F.C. Antunes, F. Domingues, M. Granada, P.S. André, mechanical properties of optical fibers, 2012
G.S. Glaesemann, Optical fiber mechanical reliability. White Paper. 8002, 1–62 (2017)
M.L. sheely, Glycerol viscosity tables. Industrial Eng. Chem., 24, 9, pp. 1060–1064, 1932/09/01 1932, https://doi.org/10.1021/ie50273a022
V.R.N. Telis, J. Telis-Romero, H.B. Mazzotti, A.L. Gabas, Viscosity of aqueous carbohydrate solutions at different temperatures and concentrations. Int. J. Food Prop., 10(1), 185–195, 2007/01/17 2007, https://doi.org/10.1080/10942910600673636
Comments (0)