Experimental determination of Young’s modulus of fiber material and viscosity of liquid using fiber-optic cantilever vibration probe

R.M. Digilov, Flexural vibration test of a cantilever beam with a force sensor: fast determination of young’s modulus. Eur. J. Phys. 29, 589 (2008). https://doi.org/10.1088/0143-0807/29/3/018

Article  Google Scholar 

R.M. Digilov, H. Abramovich, Flexural vibration test of a beam elastically restrained at one end: A new approach for Young’s modulus determination. Adv. Mater. Sci. Eng. 329530 (2013)., https://doi.org/10.1155/2013/329530

X. Kang, C.J. Tay, C. Quan, X. He, Evaluation of young’s modulus of a vibrating beam by optical method. Opt. Eng. 42, 10 (2003). https://doi.org/10.1117/1.1602089

Article  Google Scholar 

L. Barboni, G.R. Gillich, C.P. Chioncel, C.O. Hamat, I.C. Mituletu, A method to precise determine the young’s modulus from dynamic measurements. IOP Conf. Ser. Mater. Sci. Eng. 416, 012063 (2018). https://doi.org/10.1088/1757-899X/416/1/012063

Article  Google Scholar 

P. Antunes, H. Lima, J. Monteiro, P.S. André, Elastic constant measurement for standard and photosensitive single mode optical fibres. Microw. Opt. Technol. Lett. 50, 2467 (2008). https://doi.org/10.1002/mop.23660

Article  Google Scholar 

F. El-Diasty, Theory and measurement of young’s modulus radial profiles of bent single-mode optical fibers with the multiple-beam interference technique. J. Opt. Soc. Am. A. 18, 1171 (2001). https://doi.org/10.1364/JOSAA.18.001171

Article  ADS  Google Scholar 

T.Z.N. Sokkar, M.A. Shams El-Din, A.S. El-Tawargy, On young’s modulus profile across anisotropic nonhomogeneous polymeric fibre using automatic transverse interferometric method. Opt. Lasers Eng. 50, 1223 (2012). https://doi.org/10.1016/j.optlaseng.2012.03.017

Article  Google Scholar 

J. Huether, P. Rupp, I. Kohlschreiber, K.A. Weidenmann, An enhanced method to determine the young’s modulus of technical single fibres by means of high resolution digital image correlation. Meas. Sci. Technol. 29, 045601 (2018). https://doi.org/10.1088/1361-6501/aaa0bb

Article  ADS  Google Scholar 

P. Li et al., A nondestructive measurement method of optical fiber young’s modulus based on OFDR sensors 22, 1450 (2022). https://www.mdpi.com/1424-8220/22/4/1450

P. Roy Chaudhuri, S. Pradhan, Fiber cantilever Deflection magnetometer in Fabry-Perot multi-mirror host for detection of ˜mt field: experimental demonstration and modeling. Optik. 186, 99 (2019). https://doi.org/10.1016/j.ijleo.2019.04.033

Article  Google Scholar 

P. Roy Chaudhuri, I. Sharma, Determination of polarization properties of piezoelectric nanocomposite particles (BiFe0.9Co0.1O3) using fiber-optic cantilever beam Deflection approach. J. Opt. 50, 611 (2021). https://doi.org/10.1007/s12596-021-00741-8

I. Sharma, P. Roy Chaudhuri, A new approach to sensing low electric field using optical fibers’ beam-deflection configuration with BiFe0.9Co0.1O3 nanoparticles as probe and determination of polarisation opt. Fiber Technol. 62, 102472 (2021). https://doi.org/10.1016/j.yofte.2021.102472

Article  Google Scholar 

I. Sharma, P. Roy Chaudhuri, Electric field sensing and polarisation measurement using advanced multi-pass interrogation type fiber-optic beam Deflection probe. Opt. Fiber Technol. 81, 103484 (2023). https://doi.org/10.1016/j.yofte.2023.103484

I. Sharma, P. Roy Chaudhuri, Demonstration of mode-switching in a few-mode fiber using electric field controlled dynamic Off-Set coupling. J. Lightwave Technol. 1–8 (2024). https://doi.org/10.1109/JLT.2024.3370846

A. Agoston, F. Keplinger, B. Jakoby, Evaluation of a vibrating micromachined cantilever sensor for measuring the viscosity of complex organic liquids. Sens. Actuators Phys. 82, 123-124 (2005). https://doi.org/10.1016/j.sna.2005.02.020

Article  ADS  Google Scholar 

I. Goubaidoulline, J. Reuber, F. Merz, D. Johannsmann, Simultaneous determination of density and viscosity of liquids based on quartz-crystal resonators covered with nanoporous alumina. J. Appl. Phys. 98, 014901 (2005). https://doi.org/10.1063/1.1942646

Article  Google Scholar 

C. Riesch, E.K. Reichel, F. Keplinger, B. Jakoby, Characterizing vibrating cantilevers for liquid viscosity and density sensing. J. Sens. 2008, 697062 (2008). https://doi.org/10.1155/2008/697062

T.L. Wilson, G.A. Campbell, R. Mutharasan, Viscosity and density values from excitation level response of piezoelectric-excited cantilever sensors. Sens. Actuators Phys. 138, 44 (2007). https://doi.org/10.1016/j.sna.2007.04.050

Article  ADS  Google Scholar 

P.I. Oden, G.Y. Chen, R.A. Steele, R.J. Warmack, T. Thundat, Viscous Drag Measurements Utilizing Microfabricated Cantilevers Appl. Phys. Lett. 68, 3814 (1996). https://doi.org/10.1063/1.116626

Article  Google Scholar 

T.K. Barik, P. Roy Chaudhuri, A. Roy, S. Kar, Probing liquid surface waves, liquid properties and liquid films with light diffraction. Meas. Sci. Technol. 17, 1553 (2006). https://doi.org/10.1088/0957-0233/17/6/037

C. Bergaud, L. Nicu, Viscosity measurements based on experimental investigations of composite cantilever beam eigenfrequencies in viscous media. Rev. Sci. Instrum. 71, 2487 (2000). https://doi.org/10.1063/1.1150640

Article  ADS  Google Scholar 

W.Y. Shih, X. Li, H. Gu, W.-H. Shih, I.A. Aksay, Simultaneous liquid viscosity and density determination with piezoelectric unimorph cantilevers. J. Appl. Phys. 89, 1497 (2001). https://doi.org/10.1063/1.1287606

Article  ADS  Google Scholar 

G. Chen, M.M. Alam, Y. Zhou, Dependence of added mass on cylinder cross-sectional geometry and orientation. J. Fluids Struct. 99, 103142 (2020). https://doi.org/10.1016/j.jfluidstructs.2020.103142

Article  ADS  Google Scholar 

M.A. Mahmoud, Validity and accuracy of resonance shift prediction formulas for microcantilevers: A review and comparative study. Crit. Rev. Solid State Mater. Sci., 41(5), 386-429 2016/09/02 2016, https://doi.org/10.1080/10408436.2016.1142858

J. Qian, P. Jia, Q. Ren, H. Liu, L. Qin, J. Xiong, An accelerometer based on all silica in-line fiber fabry-perot etalon for high temperature up to 800°C, Micromachines, 13(4), 548 (2022) [Online]. Available: https://www.mdpi.com/2072-666X/13/4/548

K. Vikestad, J.K. Vandiver, C.M. Larsen, Added mass and oscillation frequency for a circular cylinder subjected to vortex-induced vibrations and external disturbance, Journal of Fluids and Structures, 14, 1071-1088 (2000) https://doi.org/10.1006/jfls.2000.0308

L.D. Landau, E.M. Lifshitz, CHAPTER II - VISCOUS FLUIDS, in Fluid Mechanics (Second Edition), L. D. Landau and E. M. Lifshitz Eds.: Pergamon, 1987, pp. 44–94

C. Solomons, M.S. White, Oscillating plate viscometry. Part 1.—Theoretical principles. Trans. Faraday Soc. 65(0), 305–315 (1969). 10.1039/TF9696500305 volhttps://doi.org/10.1039/TF9696500305

Article  Google Scholar 

S.N.H. Syuhri, H. Zare-Behtash, A. Cammarano, investigating the influence of fluid-structure interactions on nonlinear system identification, Vibration, vol. 3, no. 4, pp. 521–544, 2020. [Online]. Available: https://www.mdpi.com/2571-631X/3/4/32

P.F.C. Antunes, F. Domingues, M. Granada, P.S. André, mechanical properties of optical fibers, 2012

G.S. Glaesemann, Optical fiber mechanical reliability. White Paper. 8002, 1–62 (2017)

Google Scholar 

M.L. sheely, Glycerol viscosity tables. Industrial Eng. Chem., 24, 9, pp. 1060–1064, 1932/09/01 1932, https://doi.org/10.1021/ie50273a022

V.R.N. Telis, J. Telis-Romero, H.B. Mazzotti, A.L. Gabas, Viscosity of aqueous carbohydrate solutions at different temperatures and concentrations. Int. J. Food Prop., 10(1), 185–195, 2007/01/17 2007, https://doi.org/10.1080/10942910600673636

Comments (0)

No login
gif