Exploring Oxazolidinone scaffolds for future antibiotics: synthesis and computational insights with DFT, docking, ADME and MD simulation

Qureshi KA, Parvez A, Jaremko M (2025) Repurposing Eugenol and cinnamaldehyde as potent antimicrobial agents: A comprehensive in-vitro and in-silico study. Bioorg Chem 156:108199. https://doi.org/10.1016/j.bioorg.2025.108199

Article  CAS  PubMed  Google Scholar 

Kumar N, Khanna A, Kaur K, Kaur H, Sharma A, Bedib PMS (2023) Quinoline derivatives volunteering against antimicrobial resistance: rational approaches, design strategies, structure activity relationship and mechanistic insights. Mol Diversity 27:1905–1934. https://doi.org/10.1007/s11030-022-10537-y

Article  CAS  Google Scholar 

Rice LB, Bonomo RA (2011) Mechanisms of resistance to antibacterial agents. Man Clin Microbiol 4:1082–1114. https://doi.org/10.1128/9781555816728.ch66

Article  Google Scholar 

Murugaiyan J, Kumar PA, Rao GS, Iskandar K, Hawser S, Hays JP, van Dongen MB (2022) Progress in alternative strategies to combat antimicrobial resistance: focus on antibiotics. Antibiotics 11:200. https://doi.org/10.3390/antibiotics11020200

Article  CAS  PubMed  PubMed Central  Google Scholar 

Awolade P, Cele N, Kerru N, Singh P (2021) Synthesis, antimicrobial evaluation, and in Silico studies of quinoline—1 H-1, 2, 3-triazole molecular hybrids. Mol Diversity 25:2201–2218. https://doi.org/10.1007/s11030-020-10112-3

Article  CAS  Google Scholar 

Kakoullis L, Papachristodoulou E, Chra P, Panos G (2021) Mechanisms of antibiotic resistance in important gram-positive and gram-negative pathogens and novel antibiotic solutions. Antibiotics 10:415. https://doi.org/10.3390/antibiotics10040415

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhat BA, Mir RA, Qadri H, Dhiman R, Almilaibary A, Alkhanani M, Mir MA (2023) Integrons in the development of antimicrobial resistance: critical review and perspectives. Front Microbiol 14:1231938. https://doi.org/10.3389/fmicb.2023.1231938

Article  PubMed  PubMed Central  Google Scholar 

Terreni M, Taccani M, Pregnolato M (2021) New antibiotics for multidrug-resistant bacterial strains: latest research developments and future perspectives. Molecules 26:2671. https://doi.org/10.3390/molecules26092671

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fernandes GFS, Scarim CB, Kim SH, Wu J, Castagnolo D (2023) Oxazolidinones as versatile scaffolds in medicinal chemistry. RSC Med Chem 14:823–847. https://doi.org/10.1039/D2MD00415A

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taylor AP, Robinson RP, Fobian YM, Blakemore DC, Jones LH, Fadeyi (2016) O modern advances in heterocyclic chemistry in drug discovery. Org Biomol Chem 14:6611–6637. https://doi.org/10.1039/C6OB00936K

Article  CAS  PubMed  Google Scholar 

Rusu A, Moga IM, Uncu L, Hancu G (2023) The role of five-membered heterocycles in the molecular structure of antibacterial drugs used in therapy. Pharmaceutics 15:2554. https://doi.org/10.3390/pharmaceutics15112554

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marchese A, Schito GC (2001) The Oxazolidinones as a new family of antimicrobial agent. Clin Microbiol Infect 7:66–74. https://doi.org/10.1046/j.1469-0691.2001.00060.x

Article  CAS  PubMed  Google Scholar 

Suzuki H, Utsunomiya I, Shudo K, Fujimura T, Tsuji M, Kato I, Aoki T, Ino A, Iwaki T (2013) Potent Oxazolidinone antibacterials with heteroaromatic C-ring substructure. ACS Med Chem Lett 4:1074–1078. https://doi.org/10.1021/ml400280z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roy D, Anas M, Manhas A, Saha S, Kumar N, Panda G (2022) Synthesis, biological evaluation, Structure- activity relationship studies of quinoline-imidazole derivatives as potent antimalarial agents. Bioorg Chem 121:105671. https://doi.org/10.1016/j.bioorg.2022.105671

Article  CAS  PubMed  Google Scholar 

Park CH, Brittelli DR, Wang CLJ, Marsh FD, Gregory WA, Wuonola MA, Forbes M (1992) Antibacterials synthesis and structure-activity studies of 3-aryl-2-oxooxazolidines. 4. Multiply-substituted Aryl derivatives. J Med Chem 35:1156–1165. https://doi.org/10.1021/jm00084a022

Article  CAS  PubMed  Google Scholar 

Yan M, Xu L, Wang Y, Wan J, Liu T, Liu W, Wan Y, Zhang B, Wang R, Li Q (2020) Opportunities and challenges of using five-membered ring compounds as promising antitubercular agents. Drug Dev Res 81:402–418. https://doi.org/10.1002/ddr.21638

Article  CAS  PubMed  Google Scholar 

Huang SY, Wang X, Shen DY, Chen F, Zhang GY, Zhang Z, Li K, Jin Z, Du D, Tang YZ (2021) Design, synthesis and biological evaluation of novel pleuromutilin derivatives as potent anti-MRSA agents targeting the 50S ribosome. Bioorg Med Chem 38:116138. https://doi.org/10.1016/j.bmc.2021.116138

Article  CAS  PubMed  Google Scholar 

Singh AK, Bhunia AK (2019) Animal-use antibiotics induce cross-resistance in bacterial pathogens to human therapeutic antibiotics. Curr Microbiol 76:1112–1117. https://doi.org/10.1007/s00284-019-01744-2

Article  CAS  PubMed  Google Scholar 

Atmaca U, Kaya R, Karaman HS, Celik M, Gülçin İ (2019) Synthesis of Oxazolidinone from enantiomerically enriched allylic alcohols and determination of their molecular Docking and biologic activities. Bioorg Chem 88:102980. https://doi.org/10.1016/j.bioorg.2019.102980

Article  CAS  PubMed  Google Scholar 

Liao Z, Wu Y, Liu M, Zhang J, Cui Y, Zhangsun D, Luo S (2025) Fatty acid chain modification enhances the serum stability of antimicrobial peptide B1 and activities against Staphylococcus aureus and Klebsiella pneumoniae. Bioorg Chem 154:108015. https://doi.org/10.1016/j.bioorg.2024.108015

Article  CAS  PubMed  Google Scholar 

Diekema DI, Jones RN (2000) Oxazolidinones: a review. Drugs 59:7–16. https://doi.org/10.2165/00003495-200059010-00002

Article  CAS  PubMed  Google Scholar 

Zappia G, Menendez P, Monache GD, Misiti D, Nevola L, Botta B (2007) The contribution of Oxazolidinone frame to the biological activity of pharmaceutical drugs and natural products. Mini Rev Med Chem 7:389–409. https://doi.org/10.2174/138955707780363783

Article  CAS  PubMed  Google Scholar 

Hutchinson DK (2003) Oxazolidinone antibacterial agents: a critical review. Curr Top Med Chem 3:1021–1042. https://doi.org/10.2174/1568026033452195

Article  CAS  PubMed  Google Scholar 

Foti C, Piperno A, Scala A, Giuffrè O (2021) Oxazolidinone antibiotics: chemical, biological and analytical aspects. Molecules 26:4280. https://doi.org/10.3390/molecules26144280

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu L, Shao L, Li J, Cui H, Li B, Zhou X, Lv P, Zhang J (2019) Synthesis, antibacterial activities, mode of action and acute toxicity studies of new oxazolidinone-fluoroquinolone hybrids. Molecules 24:1641. https://doi.org/10.3390/molecules24081641

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qureshi SI, Chaudhari HK (2019) Design, synthesis, in-silico studies and biological screening of Quinazolinone analogues as potential antibacterial agents against MRSA. Bioorg Med Chem 27:2676–2688. https://doi.org/10.1016/j.bmc.2019.05.012

Article  CAS  PubMed  Google Scholar 

Leach KL, Brickner SJ, Noe MC, Miller PF (2011) Linezolid, the first Oxazolidinone antibacterial agent. Ann N Y Acad Sci 1222:49–54. https://doi.org/10.1111/j.1749-6632.2011.05962.x

Article  CAS  PubMed 

Comments (0)

No login
gif