Qureshi KA, Parvez A, Jaremko M (2025) Repurposing Eugenol and cinnamaldehyde as potent antimicrobial agents: A comprehensive in-vitro and in-silico study. Bioorg Chem 156:108199. https://doi.org/10.1016/j.bioorg.2025.108199
Article CAS PubMed Google Scholar
Kumar N, Khanna A, Kaur K, Kaur H, Sharma A, Bedib PMS (2023) Quinoline derivatives volunteering against antimicrobial resistance: rational approaches, design strategies, structure activity relationship and mechanistic insights. Mol Diversity 27:1905–1934. https://doi.org/10.1007/s11030-022-10537-y
Rice LB, Bonomo RA (2011) Mechanisms of resistance to antibacterial agents. Man Clin Microbiol 4:1082–1114. https://doi.org/10.1128/9781555816728.ch66
Murugaiyan J, Kumar PA, Rao GS, Iskandar K, Hawser S, Hays JP, van Dongen MB (2022) Progress in alternative strategies to combat antimicrobial resistance: focus on antibiotics. Antibiotics 11:200. https://doi.org/10.3390/antibiotics11020200
Article CAS PubMed PubMed Central Google Scholar
Awolade P, Cele N, Kerru N, Singh P (2021) Synthesis, antimicrobial evaluation, and in Silico studies of quinoline—1 H-1, 2, 3-triazole molecular hybrids. Mol Diversity 25:2201–2218. https://doi.org/10.1007/s11030-020-10112-3
Kakoullis L, Papachristodoulou E, Chra P, Panos G (2021) Mechanisms of antibiotic resistance in important gram-positive and gram-negative pathogens and novel antibiotic solutions. Antibiotics 10:415. https://doi.org/10.3390/antibiotics10040415
Article CAS PubMed PubMed Central Google Scholar
Bhat BA, Mir RA, Qadri H, Dhiman R, Almilaibary A, Alkhanani M, Mir MA (2023) Integrons in the development of antimicrobial resistance: critical review and perspectives. Front Microbiol 14:1231938. https://doi.org/10.3389/fmicb.2023.1231938
Article PubMed PubMed Central Google Scholar
Terreni M, Taccani M, Pregnolato M (2021) New antibiotics for multidrug-resistant bacterial strains: latest research developments and future perspectives. Molecules 26:2671. https://doi.org/10.3390/molecules26092671
Article CAS PubMed PubMed Central Google Scholar
Fernandes GFS, Scarim CB, Kim SH, Wu J, Castagnolo D (2023) Oxazolidinones as versatile scaffolds in medicinal chemistry. RSC Med Chem 14:823–847. https://doi.org/10.1039/D2MD00415A
Article CAS PubMed PubMed Central Google Scholar
Taylor AP, Robinson RP, Fobian YM, Blakemore DC, Jones LH, Fadeyi (2016) O modern advances in heterocyclic chemistry in drug discovery. Org Biomol Chem 14:6611–6637. https://doi.org/10.1039/C6OB00936K
Article CAS PubMed Google Scholar
Rusu A, Moga IM, Uncu L, Hancu G (2023) The role of five-membered heterocycles in the molecular structure of antibacterial drugs used in therapy. Pharmaceutics 15:2554. https://doi.org/10.3390/pharmaceutics15112554
Article CAS PubMed PubMed Central Google Scholar
Marchese A, Schito GC (2001) The Oxazolidinones as a new family of antimicrobial agent. Clin Microbiol Infect 7:66–74. https://doi.org/10.1046/j.1469-0691.2001.00060.x
Article CAS PubMed Google Scholar
Suzuki H, Utsunomiya I, Shudo K, Fujimura T, Tsuji M, Kato I, Aoki T, Ino A, Iwaki T (2013) Potent Oxazolidinone antibacterials with heteroaromatic C-ring substructure. ACS Med Chem Lett 4:1074–1078. https://doi.org/10.1021/ml400280z
Article CAS PubMed PubMed Central Google Scholar
Roy D, Anas M, Manhas A, Saha S, Kumar N, Panda G (2022) Synthesis, biological evaluation, Structure- activity relationship studies of quinoline-imidazole derivatives as potent antimalarial agents. Bioorg Chem 121:105671. https://doi.org/10.1016/j.bioorg.2022.105671
Article CAS PubMed Google Scholar
Park CH, Brittelli DR, Wang CLJ, Marsh FD, Gregory WA, Wuonola MA, Forbes M (1992) Antibacterials synthesis and structure-activity studies of 3-aryl-2-oxooxazolidines. 4. Multiply-substituted Aryl derivatives. J Med Chem 35:1156–1165. https://doi.org/10.1021/jm00084a022
Article CAS PubMed Google Scholar
Yan M, Xu L, Wang Y, Wan J, Liu T, Liu W, Wan Y, Zhang B, Wang R, Li Q (2020) Opportunities and challenges of using five-membered ring compounds as promising antitubercular agents. Drug Dev Res 81:402–418. https://doi.org/10.1002/ddr.21638
Article CAS PubMed Google Scholar
Huang SY, Wang X, Shen DY, Chen F, Zhang GY, Zhang Z, Li K, Jin Z, Du D, Tang YZ (2021) Design, synthesis and biological evaluation of novel pleuromutilin derivatives as potent anti-MRSA agents targeting the 50S ribosome. Bioorg Med Chem 38:116138. https://doi.org/10.1016/j.bmc.2021.116138
Article CAS PubMed Google Scholar
Singh AK, Bhunia AK (2019) Animal-use antibiotics induce cross-resistance in bacterial pathogens to human therapeutic antibiotics. Curr Microbiol 76:1112–1117. https://doi.org/10.1007/s00284-019-01744-2
Article CAS PubMed Google Scholar
Atmaca U, Kaya R, Karaman HS, Celik M, Gülçin İ (2019) Synthesis of Oxazolidinone from enantiomerically enriched allylic alcohols and determination of their molecular Docking and biologic activities. Bioorg Chem 88:102980. https://doi.org/10.1016/j.bioorg.2019.102980
Article CAS PubMed Google Scholar
Liao Z, Wu Y, Liu M, Zhang J, Cui Y, Zhangsun D, Luo S (2025) Fatty acid chain modification enhances the serum stability of antimicrobial peptide B1 and activities against Staphylococcus aureus and Klebsiella pneumoniae. Bioorg Chem 154:108015. https://doi.org/10.1016/j.bioorg.2024.108015
Article CAS PubMed Google Scholar
Diekema DI, Jones RN (2000) Oxazolidinones: a review. Drugs 59:7–16. https://doi.org/10.2165/00003495-200059010-00002
Article CAS PubMed Google Scholar
Zappia G, Menendez P, Monache GD, Misiti D, Nevola L, Botta B (2007) The contribution of Oxazolidinone frame to the biological activity of pharmaceutical drugs and natural products. Mini Rev Med Chem 7:389–409. https://doi.org/10.2174/138955707780363783
Article CAS PubMed Google Scholar
Hutchinson DK (2003) Oxazolidinone antibacterial agents: a critical review. Curr Top Med Chem 3:1021–1042. https://doi.org/10.2174/1568026033452195
Article CAS PubMed Google Scholar
Foti C, Piperno A, Scala A, Giuffrè O (2021) Oxazolidinone antibiotics: chemical, biological and analytical aspects. Molecules 26:4280. https://doi.org/10.3390/molecules26144280
Article CAS PubMed PubMed Central Google Scholar
Liu L, Shao L, Li J, Cui H, Li B, Zhou X, Lv P, Zhang J (2019) Synthesis, antibacterial activities, mode of action and acute toxicity studies of new oxazolidinone-fluoroquinolone hybrids. Molecules 24:1641. https://doi.org/10.3390/molecules24081641
Article CAS PubMed PubMed Central Google Scholar
Qureshi SI, Chaudhari HK (2019) Design, synthesis, in-silico studies and biological screening of Quinazolinone analogues as potential antibacterial agents against MRSA. Bioorg Med Chem 27:2676–2688. https://doi.org/10.1016/j.bmc.2019.05.012
Article CAS PubMed Google Scholar
Leach KL, Brickner SJ, Noe MC, Miller PF (2011) Linezolid, the first Oxazolidinone antibacterial agent. Ann N Y Acad Sci 1222:49–54. https://doi.org/10.1111/j.1749-6632.2011.05962.x
Comments (0)