Fosgerau K, Hoffmann T (2015) Peptide therapeutics current status and future directions. Drug Discov Today 20(1):122–128. https://doi.org/10.1016/j.drudis.2014.10.003
Article CAS PubMed Google Scholar
Ji X, Nielsen AL, Heinis C (2024) Cyclic peptides for drug development. Angew Chem Int Ed 63(3):202308251. https://doi.org/10.1002/anie.202308251
Ramadhani D, Maharani R, Gazzali AM, Muchtaridi M (2022) Cyclic peptides for the treatment of cancers a review. Molecules 27(14):4428. https://doi.org/10.3390/molecules27144428. (Number: 14 Publisher: Multidisciplinary Digital Publishing Institute)
Article CAS PubMed PubMed Central Google Scholar
Gao M, Cheng K, Yin H (2015) Targeting protein-protein interfaces using macrocyclic peptides. Pept Sci 104(4):310–316. https://doi.org/10.1002/bip.22625
Wang H, Dawber RS, Zhang P, Walko M, Wilson AJ, Wang X (2021) Peptide-based inhibitors of protein-protein interactions: biophysical, structural and cellular consequences of introducing a constraint Chem. Sci 12(17):5977–5993. https://doi.org/10.1039/D1SC00165E. (Publisher: The Royal Society of Chemistry)
Park SE, Sajid MI, Parang K, Tiwari RK (2019) Cyclic cell-penetrating peptides as efficient intracellular drug delivery tools. Mol Pharm. https://doi.org/10.1021/acs.molpharmaceut.9b00633
Article PubMed PubMed Central Google Scholar
Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15(1):49–63. https://doi.org/10.1038/nrm3722. (Publisher: American Chemical Society)
Article CAS PubMed Google Scholar
...Chang YS, Graves B, Guerlavais V, Tovar C, Packman K, To K-H, Olson KA, Kesavan K, Gangurde P, Mukherjee A, Baker T, Darlak K, Elkin C, Filipovic Z, Qureshi FZ, Cai H, Berry P, Feyfant E, Shi XE, Horstick J, Annis DA, Manning AM, Fotouhi N, Nash H, Vassilev LT, Sawyer TK (2013) Stapled a-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc Natl Acad Sci 110(36):3445–3454. https://doi.org/10.1073/pnas.1303002110. (Publisher: Proceedings of the National Academy of Sciences)
Taherali F, Chouhan N, Wang F, Lavielle S, Baran M, McCoubrey LE, Basit AW, Yadav V (2023) Impact of peptide structure on colonic stability and tissue permeability. Pharmaceutics 15(7):1956. https://doi.org/10.3390/pharmaceutics15071956. (Number: 7 Publisher: Multidisciplinary Digital Publishing Institute)
Article CAS PubMed PubMed Central Google Scholar
Bogdanowich-Knipp SJ, Chakrabarti S, Siahaan TJ, Williams TD, Dillman RK (1999) Solution stability of linear vs. cyclic RGD peptides. J Pept Res 53(5):530–541. https://doi.org/10.1034/j.1399-3011.1999.00052.x
Article CAS PubMed Google Scholar
Merz ML, Habeshian S, Li B, David J-AGL, Nielsen AL, Ji X, Il Khwildy K, Duany Benitez MM, Phothirath P, Heinis C (2024) De novo development of small cyclic peptides that are orally bioavailable. Nat Chem Biol 20(5):624–633. https://doi.org/10.1038/s41589-023-01496-y. (Publisher: Nature Publishing Group)
Article CAS PubMed Google Scholar
Lohan S, Konshina AG, Mohammed EHM, Helmy NM, Jha SK, Tiwari RK, Maslennikov I, Efremov RG, Parang K (2025) Impact of stereochemical replacement on activity and selectivity of membrane-active antibacterial and antifungal cyclic peptides. npj Antimicrob Resist 3(1):56. https://doi.org/10.1038/s44259-025-00121-3
Article PubMed PubMed Central Google Scholar
Dougherty PG, Sahni A, Pei D (2019) Understanding cell penetration of cyclic peptides. Chem Rev 119(17):10241–10287. https://doi.org/10.1021/acs.chemrev.9b00008. (Publisher: American Chemical Society)
Article CAS PubMed PubMed Central Google Scholar
Poongavanam V, Wieske LHE, Peintner S, Erdőlyi B, Kihlberg J (2023) Molecular chameleons in drug discovery. Nat Rev Chem 8(1):45–60. https://doi.org/10.1038/s41570-023-00563-1
Article CAS PubMed Google Scholar
Zamora-Carreras H, Maestro B, Sanz JM, Jimenez MA (2020) Turncoat polypeptides: we adapt to our environment. ChemBioChem 21(4):432–441. https://doi.org/10.1002/cbic.201900446
Article CAS PubMed Google Scholar
Lorin A, Thomas A, Stroobant V, Brasseur R, Lins L (2006) Lipid-destabilising properties of a peptide with structural plasticity. Chem Phys Lipid 141(1):185–196. https://doi.org/10.1016/j.chemphyslip.2006.02.019
Ramelot TA, Palmer J, Montelione GT, Bhardwaj G (2023) Cell-permeable chameleonic peptides: exploiting conformational dynamics in de novo cyclic peptide design. Curr Opin Struct Biol 80:102603. https://doi.org/10.1016/j.sbi.2023.102603
Article CAS PubMed PubMed Central Google Scholar
Buckton LK, Rahimi MN, McAlpine SR (2021) Cyclic peptides as drugs for intracellular targets: the next frontier in peptide therapeutic development. Chem Eur J 27(5):1487–1513. https://doi.org/10.1002/chem.201905385
Article CAS PubMed Google Scholar
Yu Y, Gu M, Guo H, Deng Y, Chen D, Wang J, Wang C, Liu X, Yan W, Huang J (2024) MuCoCP: a priori chemical knowledge-based multimodal contrastive learning pre-trained neural network for the prediction of cyclic peptide membrane penetration ability. Bioinformatics 40(8):473. https://doi.org/10.1093/bioinformatics/btae473
Cao L, Xu Z, Shang T, Zhang C, Wu X, Wu Y, Zhai S, Zhan Z, Duan H (2024) Multi_cycgt: a deep learning-based multimodal model for predicting the membrane permeability of cyclic peptides. J Med Chem 67(3):1888–1899. https://doi.org/10.1021/acs.jmedchem.3c01611. (Publisher: American Chemical Society)
Article CAS PubMed Google Scholar
Lin K, Zhang C, Bai R, Duan H (2025) Cyclic peptide therapeutic agents discovery: computational and artificial intelligence-driven strategies. J Med Chem 68(11):10577–10598. https://doi.org/10.1021/acs.jmedchem.5c00712. (Publisher: American Chemical Society)
Article CAS PubMed Google Scholar
Cabezon A, Otovic E, Kalafatovic D, Pineiro A, Garcia-Fandino R, Mausa G (2025) Unravelling cyclic peptide membrane permeability prediction: a study on data augmentation, architecture choices, and representation schemes. Digital Discovery 4(5):1259–1275. https://doi.org/10.1039/D4DD00375F. (Publisher: Royal Society of Chemistry)
Zhang T, Li H, Xi H, Stanton RV, Rotstein SH (2012) HELM: a hierarchical notation language for complex biomolecule structure representation. J Chem Inf Model 52(10):2796–2806. https://doi.org/10.1021/ci3001925. (Publisher: American Chemical Society)
Article CAS PubMed Google Scholar
Lewis M, Liu Y, Goyal N, Ghazvininejad M, Mohamed A, Levy O, Stoyanov V, Zettlemoyer L (2019) BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension. arXiv. http://arxiv.org/abs/1910.13461
Wan F, Wong F, Collins JJ, Fuente-Nunez C (2024) Machine learning for antimicrobial peptide identification and design. Nat Rev Bioeng 2(5):392–407. https://doi.org/10.1038/s44222-024-00152-x. (Publisher: Nature Publishing Group)
Article CAS PubMed PubMed Central Google Scholar
Bhardwaj G, O’Connor J, Rettie S, Huang Y-H, Ramelot TA, Mulligan VK, Alpkilic GG, Palmer J, Bera AK, Bick MJ, Piazza MD, Li X, Hosseinzadeh P, Craven TW, Tejero R, Lauko A, Choi R, Glynn C, Dong L, Griffin R, Voorhis WCv, Rodriguez J, Stewart L, Montelione GT, Craik D, Baker D (2022) Accurate de novo design of membrane-traversing macrocycles. Cell 185(19):3520–353226. https://doi.org/10.1016/j.cell.2022.07.019. Publisher: Elsevier
Hollingsworth SA, Dror RO (2018) Molecular dynamics simulation for all. Neuron 99(6):1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011
Article CAS PubMed PubMed Central Google Scholar
Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E (2019) Characterization of lipid-protein interactions and lipid-mediated modulation of membrane protein function through molecular simulation. Chem Rev 119(9):6086–6161. https://doi.org/10.1021/acs.chemrev.8b00608. (Publisher: American Chemical Society)
Article CAS PubMed PubMed Central Google Scholar
Bennion BJ, Be NA, McNerney MW, Lao V, Carlson EM, Valdez CA, Malfatti MA, Enright HA, Nguyen TH, Lightstone FC, Carpenter TS (2017) Predicting a drug’s membrane permeability: a computational model valiyeard with in vitro permeability assay data. J Phys Chem B 121(20):5228–5237. https://doi.org/10.1021/acs.jpcb.7b02914. (Publisher: American Chemical Society)
Comments (0)