Computational and experimental repositioning of quinoline analogues as KSP inhibitors: insights from free energy landscape and PCA analysis

Bates D, Eastman A (2017) Microtubule destabilising agents: far more than just antimitotic anticancer drugs. Br J Clin Pharmacol 83(2):255–268. https://doi.org/10.1111/bcp.13126

Article  CAS  PubMed  Google Scholar 

Silva JP, Pinto B, Monteiro L, Silva PM, Bousbaa H (2024) Coupling Kinesin spindle protein and aurora b inhibition with apoptosis induction enhances oral cancer cell killing. Cancers 16(11):2014. https://doi.org/10.3390/cancers16112014

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ding YH, Zhou ZW, Ha CF, Zhang XY, Pan ST, He ZX, Edelman JL, Wang D, Yang YX, Zhang X, Duan W (2015) Alisertib, an Aurora kinase a inhibitor, induces apoptosis and autophagy but inhibits epithelial to mesenchymal transition in human epithelial ovarian cancer cells. Drug Des, Dev Ther 9:425–464. https://doi.org/10.2147/DDDT.S74062

Article  CAS  Google Scholar 

Wojcik EJ, Buckley RS, Richard J, Liu L, Huckaba TM, Kim S (2013) Kinesin-5: cross-bridging mechanism to targeted clinical therapy. Gene 531(1):133–149. https://doi.org/10.1016/j.gene.2013.08.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kapitein LC, Peterman EJ, Kwok BH, Kim JH, Kapoor TM, Schmidt CF (2005) The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature 435(5):114–118. https://doi.org/10.1038/nature03503

Article  CAS  PubMed  Google Scholar 

Solomon R, V, Lee H (2011) Quinoline as a privileged scaffold in cancer drug discovery. Current Med Chem 18(10):1488–1508. https://doi.org/10.2174/092986711795328382

Article  CAS  Google Scholar 

Da Gama AN, Soeiro MN (2021) Quinoline-based compounds as key candidates to tackle drug discovery programs of microbicidal agents. Curr Pharm Des 27(15):1757–1762. https://doi.org/10.2174/1381612826666201006125644

Article  CAS  PubMed  Google Scholar 

Jain S, Chandra V, Jain PK, Pathak K, Pathak D, Vaidya A (2019) Comprehensive review on current developments of quinoline-based anticancer agents. Arab J Chem 12(8):4920–4946. https://doi.org/10.1016/j.arabjc.2016.10.009

Article  CAS  Google Scholar 

Kardile RA, Sarkate AP, Lokwani DK, Tiwari SV, Azad R, Thopate SR (2023) Design, synthesis, and biological evaluation of novel quinoline derivatives as small-molecule mutant EGFR inhibitors targeting resistance in NSCLC: in vitro screening and ADME predictions. Eur J Med Chem 5(245):114889. https://doi.org/10.1016/j.ejmech.2022.114889

Article  CAS  Google Scholar 

Yang Y, Shi L, Zhou Y, Li HQ, Zhu ZW, Zhu HL (2010) Design, synthesis and biological evaluation of quinoline amide derivatives as novel VEGFR-2 inhibitors. Bioorg Med Chem Lett 20(22):6653–6656. https://doi.org/10.1016/j.bmcl.2010.09.014

Article  CAS  PubMed  Google Scholar 

Nan X, Li HJ, Fang SB, Li QY, Wu YC (2020) Structure-based discovery of novel 4-(2-fluorophenoxy) quinoline derivatives as c-Met inhibitors using isocyanide-involved multicomponent reactions. Eur J Med Chem 1(193):112241. https://doi.org/10.1016/j.ejmech.2020.112241

Article  CAS  Google Scholar 

Kavalapure RS, Alegaon SG, Venkatasubramanian U, Priya AS, Ranade SD, Khanal P, Mishra S, Patil D, Salve PS, Jalalpure SS (2021) Design, synthesis, and molecular docking study of some 2-((7-chloroquinolin-4-yl) amino) benzohydrazide Schiff bases as potential Eg5 inhibitory agents. Bioorg Chem 1(116):105381. https://doi.org/10.1016/j.bioorg.2021.105381

Article  CAS  Google Scholar 

Ranade SD, Alegaon SG, Venkatasubramanian U, Priya AS, Kavalapure RS, Chand J, Jalalpure SS, Vinod D (2023) Design, synthesis, molecular dynamics simulation, MM/GBSA studies and kinesin spindle protein inhibitory evaluation of some 4-aminoquinoline hybrids. Comput Biol Chem 1(105):107881. https://doi.org/10.1016/j.compbiolchem.2023.107881

Article  CAS  Google Scholar 

Jiang C, Yang L, Wu WT, Guo QL, You QD (2011) De novo design, synthesis and biological evaluation of 1, 4-dihydroquinolin-4-ones and 1, 2, 3, 4-tetrahydroquinazolin-4-ones as potent kinesin spindle protein (KSP) inhibitors. Bioorg Med Chem 19(18):5612–5627. https://doi.org/10.1016/j.bmc.2011.07.029

Article  CAS  PubMed  Google Scholar 

Wolter P, Hanselmann S, Pattschull G, Schruf E, Gaubatz S (2017) Central spindle proteins and mitotic kinesins are direct transcriptional targets of MuvB, B-MYB and FOXM1 in breast cancer cell lines and are potential targets for therapy. Oncotarget 8:11160. https://doi.org/10.18632/oncotarget.14466

Article  PubMed  PubMed Central  Google Scholar 

Ulaganathan V, Talapatra SK, Rath O, Pannifer A, Hackney DD, Kozielski F (2013) Structural insights into a unique inhibitor binding pocket in kinesin spindle protein. J Am Chem Soc 135(13):2263–2272. https://doi.org/10.1021/ja310377d

Article  CAS  PubMed  Google Scholar 

Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(16):55–63. https://doi.org/10.1016/0022-1759(83)90303-4

Article  CAS  PubMed  Google Scholar 

Ban T, Ohue M, Akiyama Y (2018) Multiple grid arrangement improves ligand docking with unknown binding sites: application to the inverse docking problem. Comput Biol Chem 1(73):139–146. https://doi.org/10.1016/j.compbiolchem.2018.02.008

Article  CAS  Google Scholar 

Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein ligand complexes. J Med Chem 49:6177–6196. https://doi.org/10.1021/jm051256o

Article  CAS  PubMed  Google Scholar 

Bowers, K. J.; Chow, E.; Xu, H.; Dror, R. O.; Eastwood, M. P.; Gregersen, B. A.; Klepeis, J. L.; Kolossvary, I.; Moraes, M. A.; Sacerdoti, F. D.; Salmon, J. K.; Shan, Y.; Shaw, D. E., “Scalable algorithms for molecular dynamics simulations on commodity clusters”, Proceedings of the ACM/IEEE conference on supercomputing (SC06), Tampa, Florida, 2006, November 11–17 https://doi.org/10.1145/1188455.1188544.

Chen W, Cui D, Jerome SV, Michino M, Lenselink EB, Huggins DJ, Beautrait A, Vendome J, Abel R, Friesner RA, Wang L (2023) Enhancing hit discovery in virtual screening through absolute protein–ligand binding free-energy calculations. J Chem Inf Model 63(11):3171–3185. https://doi.org/10.1021/acs.jcim.3c00013

Article  CAS  PubMed  Google Scholar 

Patil VS, Patil CR, Patel HM, Kumar A (2025) Exploring disulfiram mechanisms in renal fibrosis: insights from biological data and computational approaches. Front Pharmacol 18(16):1480732. https://doi.org/10.3389/fphar.2025.1480732

Article  CAS  Google Scholar 

Bingol EN, Sercinoglu O, Ozbek P (2021) Unraveling the allosteric communication mechanisms in T-cell receptor–peptide-loaded major histocompatibility complex dynamics using molecular dynamics simulations: an approach based on dynamic cross-correlation maps and residue interaction energy calculations. J Chem Inf Model 61(5):2444–2453. https://doi.org/10.1021/acs.jcim.1c00338

Article  CAS  PubMed  Google Scholar 

Mulakala C, Viswanadhan VN (2013) Could MM-GBSA be accurate enough for the calculation of absolute protein/ligand binding free energies? J Mol Graph Model 1(46):41–51. https://doi.org/10.1016/j.jmgm.2013.09.005

Article  CAS  Google Scholar 

Ranade SD, Alegaon SG, Khatib NA, Gharge S, Kavalapure RS (2024) Quinoline-based Schiff bases as possible antidiabetic agents: ligand-based pharmacophore modeling, 3D QSAR, docking, and molecular dynamics simulations study. RSC Med Chem 15(9):3162–3179. https://doi.org/10.1039/D4MD00344F

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif