Pammolli F, Magazzini L, Riccaboni M (2011) The productivity crisis in pharmaceutical R&D. Nat Rev Drug Discov 10:428–438
Dowden H, Munro J (2019) Trends in clinical success rates and therapeutic focus. Nat Rev Drug Discov 18:495–496
Takebe T, Imai R, Ono S (2018) The current status of drug discovery and development as originated in united States academia: the influence of industrial and academic collaboration on drug discovery and development. Clin Transl Sci 11:597–606
PubMed PubMed Central Google Scholar
Hwang TJ, Carpenter D, Lauffenburger JC, Wang B, Franklin JM, Kesselheim AS (2016) Failure of investigational drugs in Late-Stage clinical development and publication of trial results. JAMA Intern Med 176:1826–1833
Harrison RK (2016) Phase II and phase III failures: 2013–2015. Nat Rev Drug Discov 15:817–818
Parasrampuria DA, Benet LZ, Sharma A (2018) Why drugs fail in late stages of development: case study analyses from the last decade and recommendations. AAPS J 20:46
van De Waterbeemd H, Beaumont SD, Walker K DK (2001) Property based design optimization of drug absorption and pharmacokinetics. J Med Chem 44:1313–1333
Sanidad KZ, Sukamtoh E, Xiao H, McClements DJ, Zhang G (2019) Curcumin: recent advances in the development of strategies to improve oral bioavailability. Annu Rev Food Sci Technol 10:597–617
Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discvery 3:711
Fagerholm U, Hellberg S, Spjuth O (2021) Advances in predictions of oral bioavailability of candidate drugs in man with new machine learning methodology. Molecules 26:2572
CAS PubMed PubMed Central Google Scholar
Thomas VH, Hitchingham BS, Zocharski L, Naath P, Surendran M, Stoner N, El-Kattan CL A (2006) The road map to oral bioavailiability an industrial perspective. Expert Opin Drug Metab Toxicol 2:591–608
Ye Z, Yang Y, Li X, Cao D, Ouyang D (2018) An integrated transfer learning and multitask learning approach for Pharmacokinetic parameter prediction. Mol Pharm 16:533–541
Miljković F, Martinsson A, Obrezanova O, Williamson B, Johnson M, Sykes A et al (2021) Machine learning models for human in vivo Pharmacokinetic parameters with in-House validation. Mol Pharm 18:4520–4530
Obrezanova O, Martinsson A, Whitehead T, Mahmoud S, Bender A, Miljković F et al (2022) Prediction of in vivo Pharmacokinetic parameters and time–exposure curves in rats using machine learning from the chemical structure. Mol Pharm 19:1488–1504
Tian S, Li Y, Wang J, Zhang J, Hou T (2011) ADME evaluation in drug discovery. 9. Prediction of oral bioavailability in humans based on molecular properties and structural fingerprints. Mol Pharm 8:841–851
Falcon-Cano G, Molina C, Cabrera-Perez MA (2020) ADME prediction with KNIME: development and validation of a publicly available workflow for the prediction of human oral bioavailability. J Chem Inf Model 60:2660–2667
Wei M, Zhang X, Pan X, Wang B, Ji C, Qi Y et al (2022) HobPre: accurate prediction of human oral bioavailability for small molecules. J Cheminform 14:1
PubMed PubMed Central Google Scholar
Rath M, Wellnitz J, Martin H-J, Melo-Filho C, Hochuli JE, Silva GM et al (2024) Pharmacokinetics profiler (PhaKinPro): model development, validation, and implementation as a web tool for triaging compounds with undesired pharmacokinetics profiles. J Med Chem 67:6508–6518
Wang J, Hou T (2015) Advances in computationally modeling human oral bioavailability. Adv Drug Deliv Rev 86:11–16
CAS PubMed PubMed Central Google Scholar
Ma L, Yan Y, Dai S, Shao D, Yi S, Wang J et al (2024) Research on prediction of human oral bioavailability of drugs based on improved deep forest. J Mol Graph Model 133:108851
Ng SSS, Lu Y (2023) Evaluating the use of graph neural networks and transfer learning for oral bioavailability prediction. J Chem Inf Model 63:5035–5044
CAS PubMed PubMed Central Google Scholar
Sun M, Zhao S, Gilvary C, Elemento O, Zhou J, Wang F (2020) Graph convolutional networks for computational drug development and discovery. Brief Bioinform 21:919–935
Heid E, Greenman KP, Chung Y, Li SC, Graff DE, Vermeire FH et al (2024) Chemprop: a machine learning package for chemical property prediction. J Chem Inf Model 64:9–17
Yang K, Swanson K, Jin W, Coley C, Eiden P, Gao H et al (2019) Analyzing learned molecular representations for property prediction. J Chem Inf Model 59:3370–3388
CAS PubMed PubMed Central Google Scholar
Bento AP, Hersey A, Felix E, Landrum G, Gaulton A, Atkinson F et al (2020) An open source chemical structure curation pipeline using RDKit. J Cheminform 12:51
CAS PubMed PubMed Central Google Scholar
Evangelista D, Nelson E, Skyner R, Tehan B, Bernetti M, Roberti M et al (2025) Application of deep learning to predict the persistence, bioaccumulation, and toxicity of pharmaceuticals. J Chem Inf Model 65:3248–3261
PubMed PubMed Central Google Scholar
Swanson K, Walther P, Leitz J, Mukherjee S, Wu JC, Shivnaraine RV et al (2024) ADMET-AI: a machine learning ADMET platform for evaluation of large-scale chemical libraries. Bioinformatics 40:btae416
CAS PubMed PubMed Central Google Scholar
Fu L, Shi S, Yi J, Wang N, He Y, Wu Z et al (2024) ADMETlab 3.0: an updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support. Nuc Acids Res 52(W1):W422–W31
Wei L, You Y, Hu Y, Wang K, Zhao H, Cheng Y et al (2025) Rapid discovery of pseudorabies virus inhibitors repurposed from the antimicrobial agent Ciprofloxacin. Eur J Med Chem 289:117490
Comments (0)