Kovesdy CP (2022) Epidemiology of chronic kidney disease: an update 2022. Kidney Int Suppl (2011) 12(1):7–11. https://doi.org/10.1016/j.kisu.2021.11.003
Levey AS, Becker C, Inker LA (2015) Glomerular filtration rate and albuminuria for detection and staging of acute and chronic kidney disease in adults: a systematic review. JAMA 313(8):837–846. https://doi.org/10.1001/jama.2015.0602
Article CAS PubMed PubMed Central Google Scholar
Wang Z, Qian H, Zhong S, Gu T, Xu M, Yang Q (2023) The relationship between triglyceride-glucose index and albuminuria in united States adults. Front Endocrinol (Lausanne) 141215055. https://doi.org/10.3389/fendo.2023.1215055
Raja P, Maxwell AP, Brazil DP (2021) The potential of albuminuria as a biomarker of diabetic complications. Cardiovasc Drugs Ther 35(3):455–466. https://doi.org/10.1007/s10557-020-07035-4
Article CAS PubMed Google Scholar
Lin YP (2013) Albuminuria in hypertension. Hypertens Res 36(9):762–764. https://doi.org/10.1038/hr.2013.76
Article CAS PubMed Google Scholar
Hart PD, Bakris GL (2010) Hypertensive nephropathy: prevention and treatment recommendations. Expert Opin Pharmacother 11(16):2675–2686. https://doi.org/10.1517/14656566.2010.485612
Article CAS PubMed Google Scholar
Barzilay JI, Farag YMK, Durthaler J (2024) Albuminuria: an underappreciated risk factor for cardiovascular disease. J Am Heart Assoc 13(2):e030131. https://doi.org/10.1161/jaha.123.030131
Article CAS PubMed PubMed Central Google Scholar
Boorsma EM, Ter Maaten JM, Damman K, van Essen BJ, Zannad F, van Veldhuisen DJ, Samani NJ, Dickstein K, Metra M, Filippatos G, Lang CC, Ng L, Anker SD, Cleland JG, Pellicori P, Gansevoort RT, Heerspink HJL, Voors AA, Emmens JE (2023) Albuminuria as a marker of systemic congestion in patients with heart failure. Eur Heart J 44(5):368–380. https://doi.org/10.1093/eurheartj/ehac528
Article CAS PubMed Google Scholar
Chu CD, Xia F, Du Y, Singh R, Tuot DS, Lamprea-Montealegre JA, Gualtieri R, Liao N, Kong SX, Williamson T, Shlipak MG, Estrella MM (2023) Estimated prevalence and testing for albuminuria in US adults at risk for chronic kidney disease. JAMA Netw Open 6(7):e2326230. https://doi.org/10.1001/jamanetworkopen.2023.26230
Article PubMed PubMed Central Google Scholar
Abdelmalek JA, Gansevoort RT, Lambers Heerspink HJ, Ix JH, Rifkin DE (2014) Estimated albumin excretion rate versus urine albumin-creatinine ratio for the assessment of albuminuria: a diagnostic test study from the prevention of renal and vascular endstage disease (PREVEND) study. Am J Kidney Dis 63(3):415–421. https://doi.org/10.1053/j.ajkd.2013.10.061
Article CAS PubMed Google Scholar
Fotheringham J, Campbell MJ, Fogarty DG, El Nahas M, Ellam T (2014) Estimated albumin excretion rate versus urine albumin-creatinine ratio for the Estimation of measured albumin excretion rate: derivation and validation of an estimated albumin excretion rate equation. Am J Kidney Dis 63(3):405–414. https://doi.org/10.1053/j.ajkd.2013.08.009
Article CAS PubMed Google Scholar
Zhang S, Huang Y, Li J, Wang X, Wang X, Zhang M, Zhang Y, Du M, Lin J, Li C (2023) Increased visceral fat area to skeletal muscle mass ratio is positively associated with the risk of cardiometabolic diseases in a Chinese natural population: A cross-sectional study. Diabetes Metab Res Rev 39(2):e3597. https://doi.org/10.1002/dmrr.3597
Cho Y, Chang Y, Ryu S, Jung HS, Kim CW, Oh H, Kim MK, Sohn W, Shin H, Wild SH, Byrne CD (2022) Skeletal muscle mass to visceral fat area ratio as a predictor of NAFLD in lean and overweight men and women with effect modification by sex. Hepatol Commun 6(9):2238–2252. https://doi.org/10.1002/hep4.1975
Article CAS PubMed PubMed Central Google Scholar
Liu C, Wong PY, Chung YL, Chow SK, Cheung WH, Law SW, Chan JCN, Wong RMY (2023) Deciphering the obesity paradox in the elderly: A systematic review and meta-analysis of sarcopenic obesity. Obes Rev 24(2):e13534. https://doi.org/10.1111/obr.13534
Article CAS PubMed Google Scholar
Nishikawa H, Asai A, Fukunishi S, Nishiguchi S, Higuchi K (2021) Metabolic syndrome and sarcopenia. Nutrients 13(10). https://doi.org/10.3390/nu13103519
Ibrahim MM (2010) Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev 11(1):11–18. https://doi.org/10.1111/j.1467-789X.2009.00623.x
Wang Z, Yang Q (2024) The causal relationship between human blood metabolites and the risk of visceral obesity: a Mendelian randomization analysis. Lipids Health Dis 23(1):39. https://doi.org/10.1186/s12944-024-02035-x
Article CAS PubMed PubMed Central Google Scholar
Han E, Lee YH, Ahn SH, Cha BS, Kim SU, Lee BW (2024) Appendicular skeletal muscle mass to visceral fat area ratio predicts hepatic morbidities. Gut Liver 18(3):509–519. https://doi.org/10.5009/gnl230238
Article CAS PubMed Google Scholar
Xing M, Ni Y, Zhang Y, Zhao X, Yu X (2023) The relationship between skeletal muscle mass to visceral fat area ratio and metabolic dysfunction-associated fatty liver disease subtypes in middle-aged and elderly population: a single-center retrospective study. Front Nutr 101246157. https://doi.org/10.3389/fnut.2023.1246157
Kim TN, Park MS, Lim KI, Yang SJ, Yoo HJ, Kang HJ, Song W, Seo JA, Kim SG, Kim NH, Baik SH, Choi DS, Choi KM (2011) Skeletal muscle mass to visceral fat area ratio is associated with metabolic syndrome and arterial stiffness: the Korean sarcopenic obesity study (KSOS). Diabetes Res Clin Pract 93(2):285–291. https://doi.org/10.1016/j.diabres.2011.06.013
Cho YT, Chen CW, Chen MP, Hu JL, Su H, Shiea J, Wu WJ, Wu DC (2013) Diagnosis of albuminuria by tryptic digestion and matrix-assisted laser desorption ionization/time-of-flight mass spectrometry. Clin Chim Acta 42076–42081. https://doi.org/10.1016/j.cca.2012.12.016
Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150(9):604–612. https://doi.org/10.7326/0003-4819-150-9-200905050-00006
Rossing P, Groop PH, Singh R, Lawatscheck R, Tuttle KR (2024) Prevalence of chronic kidney disease in type 1 diabetes among adults in the U.S. Diabetes Care 47(8):1395–1399. https://doi.org/10.2337/dc24-0335
Article PubMed PubMed Central Google Scholar
Murphy D, McCulloch CE, Lin F, Banerjee T, Bragg-Gresham JL, Eberhardt MS, Morgenstern H, Pavkov ME, Saran R, Powe NR, Hsu CY (2016) Trends in prevalence of chronic kidney disease in the united States. Ann Intern Med 165(7):473–481. https://doi.org/10.7326/m16-0273
Article PubMed PubMed Central Google Scholar
Wang Z, Wu M, Du R, Tang F, Xu M, Gu T, Yang Q (2024) The relationship between non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio (NHHR) and hyperuricaemia. Lipids Health Dis 23(1):187. https://doi.org/10.1186/s12944-024-02171-4
Article CAS PubMed PubMed Central Google Scholar
Ma R, Cui L, Cai J, Yang N, Wang Y, Chen Q, Chen W, Peng C, Qin H, Ding Y, Wang X, Yu Q, Shi Y (2024) Association between systemic immune inflammation index, systemic inflammation response index and adult psoriasis: evidence from NHANES. Front Immunol 151323174. https://doi.org/10.3389/fimmu.2024.1323174
Cao Y, Li P, Zhang Y, Qiu M, Li J, Ma S, Yan Y, Li Y, Han Y (2023) Association of systemic immune inflammatory index with all-cause and cause-specific mortality in hypertensive individuals: results from NHANES. Front Immunol 141087345. https://doi.org/10.3389/fimmu.2023.1087345
Kosidło JW, Wolszczak-Biedrzycka B, Matowicka-Karna J, Dymicka-Piekarska V, Dorf J (2023) Clinical significance and diagnostic utility of NLR, LMR, PLR and SII in the course of COVID-19: A literature review. J Inflamm Res 16539–16562. https://doi.org/10.2147/jir.S395331
Kim TN, Choi KM (2015) The implications of sarcopenia and sarcopenic obesity on cardiometabolic disease. J Cell Biochem 116(7):1171–1178. https://doi.org/10.1002/jcb.25077
Article CAS PubMed Google Scholar
Wannamethee SG, Atkins JL (2015) Muscle loss and obesity: the health implications of sarcopenia and sarcopenic obesity. Proc Nutr Soc 74(4):405–412. https://doi.org/10.1017/s002966511500169x
Cruz-Jentoft AJ, Sayer AA (2019) Sarcopenia. Lancet 393(10191):2636–2646. https://doi.org/10.1016/s0140-6736(19)31138-9
Kim TN, Lee EJ, Hong JW, Kim JM, Won JC, Kim MK, Noh JH, Ko KS, Rhee BD, Kim DJ (2016) Relationship between sarcopenia and albuminuria: the 2011 Korea National health and nutrition examination survey. Med (Baltim) 95(3):e2500. https://doi.org/10.1097/md.0000000000002500
Liu Y, Zhao D, Chai S, Zhang X (2024) Association of visceral adipose tissue with albuminuria and interaction between visceral adiposity and diabetes on albuminuria. Acta Diabetol 61(7):909–916. https://doi.org/10.1007/s00592-024-02271-8
Article CAS PubMed PubMed Central Google Scholar
Welsh GI, Coward RJ (2010) Podocytes, glucose and insulin. Curr Opin Nephrol Hypertens 19(4): 379– 84. https://doi.org/10.1097/MNH.0b013e32833ad5e4
Kalinkovich A, Livshits G (2017) Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Agei
Comments (0)