Schneider SL, Kohli I, Hamzavi IH, Council ML, Rossi AM, Ozog DM. Emerging imaging technologies in dermatology: part II: applications and limitations. J Am Acad Dermatol. 2019;80(4):1121–31. https://doi.org/10.1016/j.jaad.2018.11.043.
Wolner ZJ, Yélamos O, Liopyris K, Rogers T, Marchetti MA, Marghoob AA. Enhancing skin cancer diagnosis with dermoscopy. Dermatol Clin. 2017;35(4):417–37. https://doi.org/10.1016/j.det.2017.06.003.
Article PubMed PubMed Central CAS Google Scholar
von Knorring T, Mogensen M. Photoacoustic tomography for assessment and quantification of cutaneous and metastatic malignant melanoma—a systematic review. Photodiagn Photodyn Ther. 2021;33(33): 102095. https://doi.org/10.1016/j.pdpdt.2020.102095.
Gadjiko M, Rossi AM. Ex vivo confocal microscopy: a diagnostic tool for skin malignancies. Cutis. 2017;100(2):81–3.
Alex A, Weingast J, Weinigel M, et al. Three-dimensional multiphoton/optical coherence tomography for diagnostic applications in dermatology. J Biophoton. 2013;6(4):352–62. https://doi.org/10.1002/jbio.201200085.
Fujimoto JG, Pitris C, Boppart SA, Brezinski ME. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia. 2000;2(1–2):9–25. https://doi.org/10.1038/sj.neo.7900071.
Article PubMed PubMed Central CAS Google Scholar
Yew E, Rowlands C, So PTC. Application of multiphoton microscopy in dermatological studies: a mini-review. J Innov Opt Health Sci. 2014;7(5):1330010. https://doi.org/10.1142/S1793545813300103.
Article PubMed PubMed Central Google Scholar
König K, Speicher M, Bückle R, et al. Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases. J Biophoton. 2009;2(6–7):389–97. https://doi.org/10.1002/jbio.200910013.
Balu M, Zachary CB, Harris RM, et al. In vivo multiphoton microscopy of basal cell carcinoma. JAMA Dermatol. 2015;151(10):1068. https://doi.org/10.1001/jamadermatol.2015.0453.
Article PubMed PubMed Central Google Scholar
Balu M, Kelly KM, Zachary CB, et al. Distinguishing between benign and malignant melanocytic nevi by in vivo multiphoton microscopy. Cancer Res. 2014;74(10):2688–97. https://doi.org/10.1158/0008-5472.CAN-13-2582.
Article PubMed PubMed Central CAS Google Scholar
Breathnach A, Concannon E, Dorairaj JJ, et al. Preoperative measurement of cutaneous melanoma and nevi thickness with photoacoustic imaging. J Med Imaging. 2018;5(01): 015004. https://doi.org/10.1117/1.jmi.5.1.015004.
Jung JM, Cho JY, Lee WJ, Chang SE, Lee MW, Won CH. Emerging minimally invasive technologies for the detection of skin cancer. J Pers Med. 2021;11(10):951. https://doi.org/10.3390/jpm11100951.
Article PubMed PubMed Central Google Scholar
Harris U, Rajadhyaksha M, Jain M. Combining reflectance confocal microscopy with optical coherence tomography for noninvasive diagnosis of skin cancers via image acquisition. J Vis Exp. 2022;2022(186): e63789. https://doi.org/10.3791/63789.
Lacarrubba F. A new way to look at the skin. Ital J Dermatol Venereol. 2023;158(3):169–70. https://doi.org/10.23736/S2784-8671.23.07643-0.
Wang YJ, Wang JY, Wu YH. Application of cellular resolution full-field optical coherence tomography in vivo for the diagnosis of skin tumours and inflammatory skin diseases: a pilot study. Dermatology. 2022;238(1):121–31. https://doi.org/10.1159/000514686.
Article PubMed CAS Google Scholar
Ruini C, Schuh S, Sattler E, Welzel J. Line-field confocal optical coherence tomography—practical applications in dermatology and comparison with established imaging methods. Skin Res Technol. 2021;27(3):340–52. https://doi.org/10.1111/srt.12949.
Schuh S, Ruini C, Perwein MKE, et al. Line-field confocal optical coherence tomography: a new tool for the differentiation between nevi and melanomas? Cancers (Basel). 2022;14(5):1140. https://doi.org/10.3390/cancers14051140.
Latriglia F, Ogien J, Tavernier C, et al. Line-field confocal optical coherence tomography (LC-OCT) for skin imaging in dermatology. Life. 2023;13(12):2268. https://doi.org/10.3390/life13122268.
Article PubMed PubMed Central Google Scholar
Aleissa S, Navarrete-Dechent C, Cordova M, et al. Presurgical evaluation of basal cell carcinoma using combined reflectance confocal microscopy–optical coherence tomography: a prospective study. J Am Acad Dermatol. 2020;82(4):962–8. https://doi.org/10.1016/j.jaad.2019.10.028.
Zugaib Abdalla BM, Posner J, Harris U, et al. Features of an atypical vascular lesion on dermoscopy, reflectance confocal microscopy, and optical coherence tomography. JAAD Case Rep. 2023;35:8–11. https://doi.org/10.1016/j.jdcr.2022.12.029.
Article PubMed PubMed Central Google Scholar
Montgomery KL, Novoa RA, Ko JM, Sanchez GN. Handheld multiphoton and pinhole-free reflectance confocal microscopy enables noninvasive, real-time cross-sectional imaging in skin. Sci Rep. 2024;14(1):26129. https://doi.org/10.1038/s41598-024-76908-7.
Article PubMed PubMed Central CAS Google Scholar
Kukk AF, Scheling F, Panzer R, Emmert S, Roth B. Non-invasive 3D imaging of human melanocytic lesions by combined ultrasound and photoacoustic tomography: a pilot study. Sci Rep. 2024;14(1):2768. https://doi.org/10.1038/s41598-024-53220-y.
Article PubMed PubMed Central CAS Google Scholar
Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:1. https://doi.org/10.1136/bmj.n71.
Higgins JPT, Thomas J, Chandler J, et al. Cochrane handbook for systematic reviews of interventions; 2019. https://doi.org/10.1002/9781119536604
McGowan J, Sampson M, Salzwedel DM, Cogo E, Foerster V, Lefebvre C. PRESS peer review of electronic search strategies: 2015 guideline statement. J Clin Epidemiol. 2016;75:40–6. https://doi.org/10.1016/j.jclinepi.2016.01.021.
The EndNote Team. EndNote 21. [Computer software]. Clarivate. https://endnote.com/. Published online 2021.
Veritas Health Innovation. Covidence systematic review software, Veritas Health Innovation, Melbourne, Australia; 2020. www.covidence.org. Melbourne Australia. Published online 2023.
Whiting P, Rutjes AWS, Reitsma JB, Bossuyt PMM, Kleijnen J. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol. 2003;3:25. https://doi.org/10.1186/1471-2288-3-25.
Article PubMed PubMed Central Google Scholar
Whiting P, Rutjes AWS, Dinnes J, Reitsma JB, Bossuyt PMM, Kleijnen J. Development and validation of methods for assessing the quality of diagnostic accuracy studies. Health Technol Assess (Rockv). 2004;8(25):1–234. https://doi.org/10.3310/hta8250.
de Oliveira MRF, de Gomes AC, Toscano CM. QUADAS and STARD: evaluating the quality of diagnostic accuracy studies. Rev Saude Publ. 2011;45(2):416–22.
Ariasi C, Licata G, Perazzolli G, et al. Features of tattoo-associated cutaneous lymphoid hyperplasia on reflectance confocal microscopy and line-field confocal optical coherence tomography. Austral J Dermatol. 2024. https://doi.org/10.1111/ajd.14246.
Bang AS, Monnier J, Harris U, et al. Non-invasive, in vivo, characterization of cutaneous metastases using a novel multimodal RCM-OCT imaging device: a case-series. J Eur Acad Dermatol Venereol. 2022;36(11):2051–4. https://doi.org/10.1111/jdv.18344.
Article PubMed PubMed Central CAS Google Scholar
Cappilli S, Guerriero C, Iacoangeli A, et al. Utility of line-field confocal optical coherence tomography in the pediatric population. Ital J Dermatol Venereol. 2023;158(3):197–204. https://doi.org/10.23736/S2784-8671.23.07634-X.
Cinotti E, Brunetti T, Cartocci A, et al. Diagnostic accuracy of line-field confocal optical coherence tomography for the diagnosis of skin carcinomas. Diagnostics. 2023;13(3):361.
Comments (0)