A unique bioreactor that offers synchronized physiological-like electrical and mechanical stimuli for cardiac tissue engineering

Bahit MC, Kochar A, Granger CB (2018) Post-myocardial infarction heart failure. JACC Heart Fail 6(3):179–186. https://doi.org/10.1016/j.jchf.2017.09.015

Google Scholar 

Tadevosyan K, Iglesias-García O, Mazo MM et al (2021) Engineering and assessing cardiac tissue complexity. Int J Mol Sci 22(3):1479. https://doi.org/10.3390/ijms22031479

Google Scholar 

Patterson T, Rivolo S, Burkhoff D et al (2021) Impact of coronary artery disease on contractile function and ventricular-arterial coupling during exercise: simultaneous assessment of left-ventricular pressure-volume and coronary pressure and flow during cardiac catheterization. Physiol Rep 9(10):e14768. https://doi.org/10.14814/phy2.14768

Google Scholar 

Moysidou CM, Barberio C, Owens RM (2021) Advances in engineering human tissue models. Front Bioeng Biotechnol 8: 620962. https://doi.org/10.3389/fbioe.2020.620962

Google Scholar 

Simon LR, Masters KS (2020) Disease-inspired tissue engineering: investigation of cardiovascular pathologies. ACS Biomater Sci Eng 6(5):2518–2532. https://doi.org/10.1021/acsbiomaterials.9b01067

Google Scholar 

Sarig U, Nguyen EB, Wang Y et al (2015) Pushing the envelope in tissue engineering: ex vivo production of thick vascularized cardiac extracellular matrix constructs. Tissue Eng Part A 21(9–10):1507–1519. https://doi.org/10.1089/ten.tea.2014.0477

Google Scholar 

Bronshtein T, Au-Yeung GCT, Sarig U et al (2013) A mathematical model for analyzing the elasticity, viscosity, and failure of soft tissue: comparison of native and decellularized porcine cardiac extracellular matrix for tissue engineering. Tissue Eng Part C Methods 19(8):620–630. https://doi.org/10.1089/ten.TEC.2012.0387

Google Scholar 

Sarig U, Sarig H, Gora A et al (2018) Biological and mechanical interplay at the macro- and microscales modulates the cell-niche fate. Sci Rep 8:3937. https://doi.org/10.1038/s41598-018-21860-6

Google Scholar 

Au-Yeung GCT, Sarig U, Sarig H et al (2017) Restoring the biophysical properties of decellularized patches through recellularization. Biomater Sci 5(6):1183–1194. https://doi.org/10.1039/c7bm00208d

Google Scholar 

Sarig U, Au-Yeung GCT, Wang Y et al (2012) Thick acellular heart extracellular matrix with inherent vasculature: a potential platform for myocardial tissue regeneration. Tissue Eng Part A 18(19–20):2125–2137. https://doi.org/10.1089/ten.TEA.2011.0586

Google Scholar 

Radisic M, Park H, Shing H et al (2004) Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci USA 101(52): 18129–18134. https://doi.org/10.1073/pnas.0407817101

Google Scholar 

Tandon N, Marsano A, Cannizzaro C et al (2008) Design of electrical stimulation bioreactors for cardiac tissue engineering. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, p.3594–3597. https://doi.org/10.1109/IEMBS.2008.4649983

Google Scholar 

Lim D, Renteria ES, Sime DS et al (2022) Bioreactor design and validation for manufacturing strategies in tissue engineering. Bio-Des Manuf 5(1):43–63. https://doi.org/10.1007/s42242-021-00154-3

Google Scholar 

Barash Y, Dvir T, Tandeitnik P et al (2010) Electric field stimulation integrated into perfusion bioreactor for cardiac tissue engineering. Tissue Eng Part C Methods 16(6):1417–1426. https://doi.org/10.1089/ten.TEC.2010.0068

Google Scholar 

Maidhof R, Tandon N, Lee EJ et al (2012) Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue. J Tissue Eng Regen Med 6(10):e12–e23. https://doi.org/10.1002/term.525

Google Scholar 

Tandon N, Marsano A, Maidhof R et al (2011) Optimization of electrical stimulation parameters for cardiac tissue engineering. J Tissue Eng Regen Med 5(6):e115–e125. https://doi.org/10.1002/term.377

Google Scholar 

Carrier RL, Papadaki M, Rupnick M et al (1999) Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol Bioeng 64(5):580–589. https://doi.org/10.1002/(SICI)1097-0290(19990905)64:5<580::AID-BIT8>3.0.CO;2-X

Google Scholar 

Li GR, Sun HY, Deng XL et al (2005) Characterization of ionic currents in human mesenchymal stem cells from bone marrow. Stem Cells 23(3):371–382. https://doi.org/10.1634/stemcells.2004-0213

Google Scholar 

Taylor DA (2004) Cell-based myocardial repair: how should we proceed? Int J Cardiol 95:S8–S12. https://doi.org/10.1016/s0167-5273(04)90003-4

Google Scholar 

Zhang JF, Wu YC, Chen AQ et al (2015) Mesenchymal stem cells promote cardiac muscle repair via enhanced neovascularization. Cell Physiol Biochem 35(3):1219–1229. https://doi.org/10.1159/000373945

Google Scholar 

Karantalis V, Hare JM (2015) Use of mesenchymal stem cells for therapy of cardiac disease. Circ Res 116(8):1413–1430. https://doi.org/10.1161/CIRCRESAHA.116.303614

Google Scholar 

Alestalo K, Lehtonen S, Yannopoulos F et al (2013) Activity of mesenchymal stem cells in a nonperfused cardiac explant model. Tissue Eng Part A 19(9–10):1122–1131. https://doi.org/10.1089/ten.TEA.2012.0241

Google Scholar 

Fukuda K (2003) Regeneration of cardiomyocytes from bone marrow: use of mesenchymal stem cell for cardiovascular tissue engineering. Cytotechnology 41(2–3):165–175. https://doi.org/10.1023/A:1024882908173

Google Scholar 

Paez-Mayorga J, Hernández-Vargas G, Ruiz-Esparza GU et al (2019) Bioreactors for cardiac tissue engineering. Adv Healthc Mater 8(7):e1701504. https://doi.org/10.1002/adhm.201701504

Google Scholar 

Singh A, Singh A, Sen D (2016) Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010–2015). Stem Cell Res Ther 7(1):82. https://doi.org/10.1186/s13287-016-0341-0

Google Scholar 

Eitan Y, Sarig U, Dahan N et al (2010) Acellular cardiac extracellular matrix as a scaffold for tissue engineering: in vitro cell support, remodeling, and biocompatibility. Tissue Eng Part C Methods 16(4):671–683. https://doi.org/10.1089/ten.TEC.2009.0111

Google Scholar 

Dodge HT (1968) Functional characteristics of the left ventricle in heart disease. Ann Intern Med 69(5):941–948. https://doi.org/10.7326/0003-4819-69-5-941

Google Scholar 

Wen ZZ, Zheng SX, Zhou CQ et al (2011) Repair mechanisms of bone marrow mesenchymal stem cells in myocardial infarction. J Cell Mol Med 15(5):1032–1043. https://doi.org/10.1111/j.1582-4934.2010.01255.x

Google Scholar 

Lin XL, Peng P, Cheng L et al (2012) A natural compound induced cardiogenic differentiation of endogenous MSCs for repair of infarcted heart. Differentiation 83(1): 1–9. https://doi.org/10.1016/j.diff.2011.09.001

MathSciNet  Google Scholar 

Shachar M, Benishti N, Cohen S (2012) Effects of mechanical stimulation induced by compression and medium perfusion on cardiac tissue engineering. Biotechnol Prog 28(6):1551–1559. https://doi.org/10.1002/btpr.1633

Google Scholar 

Pedrizzetti G, Perktold K (2003) Cardiovascular Fluid Mechanics (1st Ed.). Springer, Vienna, Austria. https://doi.org/10.1007/978-3-7091-2542-7

Google Scholar 

Zhao JJ, Liu XC, Kong F et al (2014) Bone marrow mesenchymal stem cells improve myocardial function in a swine model of acute myocardial infarction. Mol Med Rep 10(3):1448–1454. https://doi.org/10.3892/mmr.2014.2378

Google Scholar 

Rahbarghazi R, Nassiri SM, Ahmadi SH et al (2014) Dynamic induction of pro-angiogenic milieu after transplantation of marrow-derived mesenchymal stem cells in experimental myocardial infarction. Int J Cardiol 173(3):453–466. https://doi.org/10.1016/j.ijcard.2014.03.008

Google Scholar 

Plonsey R, Barr RC (1988) Extracellular fields. In: Bioelectricity. Springer, Boston, USA, p.149–163. https://doi.org/10.1007/978-1-4757-9456-4_7

Google Scholar 

Ivanushkina NG, Ivanko KO, Shpotak MO et al (2022) Reconstruction of action potentials of cardiac cells from extracellular field potentials. Radioelectron Commun Syst 65(7):354–364. https://doi.org/10.3103/S0735272722090047

Google Scholar 

Govoni M, Muscari C, Guarnieri C et al (2013) Mechanostimulation protocols for cardiac tissue engineering. Biomed Res Int 2013:918640. https://doi.org/10.1155/2013/918640

Google Scholar 

Morgan KY, Black LD (2017) Investigation into the effects of varying frequency of mechanical stimulation in a cycle-by-cycle manner on engineered cardiac construct function. J Tissue Eng Regen Med 11(2):342–353. https://doi.org/10.1002/term.1915

Google Scholar 

Hülsmann J, Aubin H, Kranz A et al (2013) A novel customizable modular bioreactor system for whole-heart cultivation under controlled 3D biomechanical stimulation. J Artif Organs 16(3):294–304. https://doi.org/10.1007/s10047-013-0705-5

Google Scholar 

Akhyari P, Fedak PWM, Weisel RD et al (2002) Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation 106(12_suppl_1):I–137–I–142. https://doi.org/10.1161/01.cir.0000032893.55215.fc

Google Scholar 

Tulloch NL, Muskheli V, Razumova MV et al (2011) Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 109(1):47–59. https://doi.org/10.1161/CIRCRESAHA.110.237206

Google Scholar 

Kroll K, Chabria M, Wang K et al (2017) Electro-mechanical conditioning of human iPSC-derived cardiomyocytes for translational research. Prog Biophys Mol Biol 130(Pt B):212–222. https://doi.org/10.1016/j.pbiomolbio.2017.07.003

Google Scholar 

Miklas JW, Nunes SS, Sofla A et al (2014) Bioreactor for modulation of cardiac microtissue phenotype by combined static stretch and electrical stimulation. Biofabrication 6(2):024113. https://doi.org/10.1088/1758-5082/6/2/024113

Google Scholar 

Lu K, Seidel T, Cao-Ehlker X et al (2021) Progressive stretch enhances growth and maturation of 3D stem-cell-derived myocardium. Theranostics 11(13):6138–6153. https://doi.org/10.7150/thno.54999

Google Scholar 

Wang B, Wang GJ, To F et al (2013) Myocardial scaffold-based cardiac tissue engineering: application of coordinated mechanical and electrical stimulations. Langmuir 29(35):11109–11117. https://doi.org/10.1021/la401702w

Google Scholar 

Morgan KY, Black LD (2014) Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs. Tissue Eng Part A 20(11–12):1654–1667. https://doi.org/10.1089/ten.TEA.2013.0355

Google Scholar 

Bootman MD, Higazi DR, Coombes S et al (2006) Calcium signalling during excitation-contraction coupling in mammalian atrial myocytes. J Cell Sci 119(Pt 19):3915–3925. https://doi.org/10.1242/jcs.03223

Google Scholar 

Korhonen T, Rapila R, Tavi P (2008) Mathematical model of mouse embryonic cardiomyocyte excitation-contraction coupling. J Gen Physiol 132(4):407–419. https://doi.org/10.1085/jgp.200809961

Google Scholar 

Garidel P, Schott H (2006) Fourier-transform midinfrared spectroscopy for analysis and screening of liquid protein formulations. Part 2: detailed analysis and applications. Bioprocess Int 4:48–55

Google Scholar 

Bastos MB, Burkhoff D, Maly J et al (2020) Invasive left ventricle pressure-volume analysis: overview and practical clinical implications. Eur Heart J 41(12):1286–1297. https://doi.org/10.1093/eurheartj/ehz552

Google Scholar 

Guyton AC, Hall JE (2011) Textbook of Medical Physiology (12th Ed.). Elsevier, Philadelphia, USA, p.45–103

Google Scholar 

Rangarajan S, Madden L, Bursac N (2014) Use of flow, electrical, and mechanical stimulation to promote engineering of striated muscles. Ann Biomed Eng 42(7):1391–1405. https://doi.org/10.1007/s10439-013-0966-4

Comments (0)

No login
gif