Integrative analysis of coding and non-coding RNAs in rice reveals conserved molecular response signatures to heat, drought, and salt stresses

Agarwal PK and Jha B 2010 Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biol. Plant. 54 201–212

Ahmed S, Rashid MAR, Zafar SA, et al. 2021 Genome-wide investigation and expression analysis of APETALA-2 transcription factor subfamily reveals its evolution, expansion and regulatory role in abiotic stress responses in Indica Rice (Oryza sativa L. ssp. indica). Genomics 113 1029–1043

Andrews S 2010 FASTQC. A quality control tool for high throughput sequence data http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Bai Y, Liu M, Zhou R, et al. 2023 Construction of ceRNA networks at different stages of somatic embryogenesis in garlic. Int. J. Mol. Sci. 24 5311

Barah P, Mahantesha BN, Jayavelu ND, et al. 2016 Transcriptional regulatory networks in Arabidopsis thaliana during single and combined stresses. Nucleic Acids Res. 44 3147–3164

PubMed  CAS  Google Scholar 

Bhardwaj A, Devi P, Chaudhary S, et al. 2022 ‘Omics’ approaches in developing combined drought and heat tolerance in food crops. Plant Cell Rep. 41 699–739

PubMed  CAS  Google Scholar 

Bolser D, Staines DM, Pritchard E, et al. 2017 Ensembl plants: integrating tools for visualizing, mining, and analyzing plant genomics data. Methods Mol. Biol. 1533 1–31

PubMed  CAS  Google Scholar 

Caixia G, Xiuwen Z, Hubo L, et al. 2020 Roles of lncRNAs in rice: advances and challenges. Rice Sci. 27 384–395

Google Scholar 

Cheabu S, Moung-Ngam P, Arikit S, et al. 2018 Effects of heat stress at vegetative and reproductive stages on spikelet fertility. Rice Sci. 25 218–222

Google Scholar 

Cheabu S, Panichawong N, Rattanametta P, et al. 2019 Screening for spikelet fertility and validation of heat tolerance in a large rice mutant population. Rice Sci. 26 229–238

Google Scholar 

Chen J, Zhong Y and Qi X 2021. LncRNA TCONS_00021861 is functionally associated with drought tolerance in rice (Oryza sativa L.) via competing endogenous RNA regulation. BMC Plant Biol. 21 410

Chen S, Zhou Y, Chen Y, et al. 2018 fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34 884–890

Google Scholar 

Chung PJ, Jung H, Jeong DH, et al. 2016 Transcriptome profiling of drought responsive noncoding RNAs and their target genes in rice. BMC Genomics 17 563

PubMed  PubMed Central  Google Scholar 

Cui J, Jiang N, Hou X, et al. 2020 Genome-wide identification of lncRNAs and analysis of ceRNA networks during tomato resistance to Phytophthora infestans. Phytopathology 110 456–464

PubMed  CAS  Google Scholar 

Das A, Moin M, Sahu A, et al. 2022 Time-course transcriptome analysis identifies rewiring patterns of transcriptional regulatory networks in rice under Rhizoctonia solani infection. Gene 828 146468

PubMed  CAS  Google Scholar 

Enright AJ, John B, Gaul U, et al. 2003 MicroRNA targets in Drosophila. Genome Biol. 5 1

Google Scholar 

Franco-Zorrilla JM, Valli A, Todesco M, et al. 2007 Target mimicry provides a new mechanism for regulation of microRNA activity. Nat. Genet. 39 1033–1037

PubMed  CAS  Google Scholar 

Grant CE, Bailey TL and Noble WS 2011 FIMO: scanning for occurrences of a given motif. Bioinformatics 27 1017–1018

PubMed  PubMed Central  CAS  Google Scholar 

Griffiths-Jones S, Grocock RJ, van Dongen S, et al. 2006 miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34 140–144

Google Scholar 

Habibpourmehraban F, Wu Y, Wu JX, et al. 2022 Multiple abiotic stresses applied simultaneously elicit distinct responses in two contrasting rice cultivars. Int. J. Mol. Sci. 23 1739

Imaduwage I and Hewadikaram M 2024 Predicted roles of long non-coding RNAs in abiotic stress tolerance responses of plants. Mol. Horticul. 4 20

CAS  Google Scholar 

Jain P, Hussian S, Nishad J, et al. 2021 Identification and functional prediction of long non-coding RNAs of rice (Oryza sativa L.) at reproductive stage under salinity stress. Mol. Biol. Rep. 48 2261–2271

PubMed  CAS  Google Scholar 

Jha UC, Nayyar H, Jha R, et al. 2020 Long non-coding RNAs: emerging players regulating plant abiotic stress response and adaptation. BMC Plant Biol. 20 466

PubMed  PubMed Central  CAS  Google Scholar 

Jiang J, Li J, Xu Y, et al. 2007 RNAi knockdown of Oryza sativa root meander curling gene led to altered root development and coiling which were mediated by jasmonic acid signalling in rice. Plant Cell Environ. 30 690–699

PubMed  CAS  Google Scholar 

Jin J, Gui S, Li Q, et al. 2020 The transcription factor GATA10 regulates fertility conversion of a two-line hybrid tms5 mutant rice via the modulation of UbL40 expression. J. Int. Plant Biol. 62 1034–1056

Jin J, Lu P, Xu Y, et al. 2021 PLncDB V2.0: a comprehensive encyclopedia of plant long noncoding RNAs. Nucleic Acids Res. 49 1489–1495

Google Scholar 

Jin Y, Pan W, Zheng X, et al. 2018 OsERF101, an ERF family transcription factor, regulates drought stress response in reproductive tissues. Plant Mol. Biol. 98 51–65

PubMed  CAS  Google Scholar 

Jing W, Deng P, Cao C et al. 2017 Fine mapping of qSKC-1, a major quantitative trait locus for shoot K+ concentration, in rice seedlings grown under salt stress. Breeding Sci. 67 286–295

Kim D, Langmead B and Salzberg SL 2015 HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12 357–360

PubMed  PubMed Central  CAS  Google Scholar 

Li XM, Chao DY, Wu Y, et al. 2015 Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nat. Genet. 47 827–833

PubMed  CAS  Google Scholar 

Lim C, Kang K, Shim Y, et al. 2020 Rice ETHYLENE RESPONSE FACTOR 101 promotes leaf senescence through jasmonic acid-mediated regulation of OsNAP and OsMYC2. Front. Plant Sci. 11 1096

Love MI, Huber W and Anders S 2014 Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15 550

PubMed  PubMed Central  Google Scholar 

Luo Y, Fang B, Wang W, et al. 2019 Genome-wide analysis of the rice J-protein family: identification, genomic organization, and expression profiles under multiple stresses. 3 Biotech 9 358

Ma L, Bajic VB and Zhang Z 2013 On the classification of long non-coding RNAs. RNA Biol. 10 924–933

PubMed Central  CAS  Google Scholar 

Mangrauthia SK, Bhogireddy S, Agarwal S, et al. 2017 Genome-wide changes in microRNA expression during short and prolonged heat stress and recovery in contrasting rice cultivars. J. Exp. Bot. 68 2399–2412

PubMed  PubMed Central  CAS  Google Scholar 

Matsui A and Seki M 2019 The involvement of long noncoding RNAs in response to plant stress. Methods Mol. Biol. 1933 151–171

PubMed  CAS  Google Scholar 

Meng X, Li A, Yu B, et al. 2021 Interplay between miRNAs and lncRNAs: mode of action and biological roles in plant development and stress adaptation. Comp. Struc. Biotech. J. 19 2567–2574

CAS  Google Scholar 

Meng X, Zhang P, Chen Q, et al. 2018 Identification and characterization of ncRNA-associated ceRNA networks in Arabidopsis leaf development. BMC Genomics 19 607

PubMed  PubMed Central  Google Scholar 

Ming Z, Zhang M, Xing L, et al. 2017 Transcriptomic analysis of long non-coding RNAs and coding genes uncovers a complex regulatory network that is involved in maize seed development. Genes 8 274

Google Scholar 

Mirdar-Mansuri R, Azizi AH, Sadri AH, et al. 2022 Long non-coding RNAs as the regulatory hubs in rice response to salt stress. Sci. Rep. 12 21696

PubMed  PubMed Central  Google Scholar 

Mittler R 2006 Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11 15–19

PubMed  CAS  Google Scholar 

Nakano T, Suzuki K, Fujimura T, et al. 2006 Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 140 411–432

PubMed  PubMed Central  CAS  Google Scholar 

Nath P, Bhuyan K, Bhattacharyya DK, et al. 2024 ETENLNC: an end to end lncRNA identification and analysis framework to facilitate construction of known and novel lncRNA regulatory networks. Comp. Biol. Chem. 112 108140

CAS  Google Scholar 

Ng DWK, Abeysinghe JK and Kamali M 2018 Regulating the regulators: the control of transcription factors in plant defense signaling. Int. J. Mol. Sci. 19 3737

Oh N, Seo JK, Chung PJ, et al. 2022 Identification and characterization of drought-induced long noncoding RNAs (DRILs) in rice. App. Biol. Chem. 65 79

CAS  Google Scholar 

Panda D, Mishra SS and Behera PK 2021 Drought tolerance in rice: focus on recent mechanisms and approaches. Rice Sci. 28 119–132

Google Scholar 

Parida AK, Sekhar S, Panda BB, et al. 2022 Effect of panicle morphology on grain filling and rice yield: genetic control and molecular regulation. Front. Genet. 13 876198

PubMed  PubMed Central  CAS  Google Scholar 

Patro R, Duggal G, Love MI, et al. 2017 Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14 417–419

PubMed  PubMed Central  CAS  Google Scholar 

Peng Y, Pan R, Liu Y, et al. 2022 LncRNA-mediated ceRNA regulatory network provides new insight into chlorogenic acid synthesis in sweet potato. Physiol. Plant 174 e13826

PubMed  CAS  Google Scholar 

Pertea G and Pertea M 2020 GFF Utilities: GffRead and GffCompare. F1000Res 9 304

Pertea M, Pertea GM, Antonescu CM, et al. 2015 StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotech. 33 290–295

CAS  Google Scholar 

Quinlan AR and Hall IM 2010 BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26 841–842

PubMed  PubMed Central  CAS 

Comments (0)

No login
gif