C. Yan, H. Li, and Z. Li, Front. Public Health 10 (2022). https://doi.org/10.3389/fpubh.2022.930780
S. K. Upadhyay, G. Singh, N. Rani, et al., Environ. Technol. Innov. 34, 103573 (2024). https://doi.org/10.1016/j.eti.2024.103573
R. K. Mishra, S. S. Mentha, Y. Misra, and N. Dwivedi, Water-Energy Nexus 6, 74 (2023). https://doi.org/10.1016/j.wen.2023.08.002
Z. Millbern, A. Trettin, R. Wu, et al., Mass Spectrom. Rev. 43, 327 (2024). https://doi.org/10.1002/mas.21818
J. Sharma, S. Sharma, and V. Soni, Reg. Stud. Mar. Sci. 45, 101802 (2021). https://doi.org/10.1016/j.rsma.2021.101802
K. Wen, H. He, and Y. Xi, Appl. Clay Sci. 180, 105203 (2019). https://doi.org/10.1016/j.clay.2019.105203
E. G. Filatova, ChemChemTech. 66, 6 (2023). https://doi.org/10.6060/ivkkt.20236609.6884
E. V. Tomina, N. A. Kurkin, and D. A. Konkina, Ekol. Prom-st Rossii 26, 17 (2022). https://doi.org/10.18412/1816-0395-2022-5-17-21
F. Ansari, M. Bazarganipour, and M. Salavati-Niasari, Mat. Sci. Semicond. Proc. 43, 34 (2016). https://doi.org/10.1016/j.mssp.2015.11.014
T. Kusworo, A. Kumoro, N. Aryanti, et al., J. Environ. Chem. Eng. 11, 109449 (2023). https://doi.org/10.1016/j.jece.2023.109449
Q. Wu and Y. Song, Chem. Eng. J. 453, 139745 (2023). https://doi.org/10.1016/j.cej.2022.139745
I. Amar, E. Zayid, S. Dhikeel, and M. Najem, Biointerface Res. Appl. Chem. 12, 7845 (2021). https://doi.org/10.33263/BRIAC126.78457862
L. Matejova, J. Bednarek, J. Tokarsky, et al., Appl. Surf. Sci. 605, 154607 (2022). https://doi.org/10.1016/j.apsusc.2022.154607
A. N. Kamarudzaman, S. N. A. C. Adan, Z. Hassan, et al., Biointerface Res. Appl. Chem. 12, 7775 (2022). https://doi.org/10.33263/BRIAC126.77757786
N. I. Omar, E. C. Abdullah, A. A. Petrus, et al., Biomass Convers. Biorefin. 13, 2279 (2021). https://doi.org/10.1007/s13399-021-01367-3
M. E. Mahmoud, M. E. Abouelanwar, S. E. M. Mahmoud, and M. A. Salam, J. Colloid Interface Sci. 606, 1597 (2022). https://doi.org/10.1016/j.jcis.2021.08.102
Article CAS PubMed Google Scholar
D. Ozdes and C. Duran, Environ. Monit. Assess. 193, 642 (2021). https://doi.org/10.1007/s10661-021-09389-0
Article CAS PubMed Google Scholar
C. Liu, L. Chen, D. Ding, and T. Cai, Appl. Catal., B 254, 312–320 (2019). https://doi.org/10.1016/j.apcatb.2019.05.014
H. K. Pathak, C. S. Seth, P. K. Chauhan, et al., Environ. Res. 255, 119136 (2024). https://doi.org/10.1016/j.envres.2024.119136
D. H. Reddy and S. M. Lee, Colloids Surf. A 454, 96 (2014). https://doi.org/10.1016/j.colsurfa.2014.03.105
Y. Zhai, Y. Dai, J. Guo, et al., J. Colloid Interface Sci. 15, 111 (2020). https://doi.org/10.1016/j.jcis.2019.08.065
J. R. D. Mello, T. S. Machado, L. Crestani, et al., Heliyon 8, 09444 (2022). https://doi.org/10.1016/j.heliyon.2022.e09444
M. M. Alam, M. A. Hossain, M. D. Hossain, et al., Processes 8, 203 (2020). https://doi.org/10.3390/pr8020203
N. P. Shabelskaya, M. Egorova, E. Vasileva, and O. Polozhentsev, Adv. Nat. Sci.: Nanosci. Nanotechnol. 12, 015004 (2021). https://doi.org/10.1088/2043-6254/abde3b
Y. Zhang, M. He, L. Wang, et al., Biochar 4, 59 (2022). https://doi.org/10.1007/s42773-022-00182-x
M. D. Dabaro and H. Kim, Int. J. Hydr. Energy 69, 660 (2024). https://doi.org/10.1016/j.ijhydene.2024.05.007
N. J. Tamanna, S. Md. Hossain, N. M. Bahadur, and S. Ahmed, Results Chem. 7, 101313 (2024). https://doi.org/10.1016/j.rechem.2024.101313
D. A. Vinnik, D. P. Sherstyuk, V. E. Zhivulin, et al., J. Magn. Magn. Mater. 605, 172344 (2024). https://doi.org/10.1016/j.jmmm.2024.172344
X. Liu, M. Zhang, and M. Gross, Chem. Rev. 120, 10 (2020). https://doi.org/10.1021/acs.chemrev.9b00815
Z. McCaffrey, A. Cal, L. Torres, et al., Polymers (Basel) 14, 3882 (2022). https://doi.org/10.3390/polym14183882
Article CAS PubMed PubMed Central Google Scholar
B. T. Zhang, Z. Yan, Y. Liu, et al., Crit. Rev. Environ. Sci. Technol. 53, 1197 (2023). https://doi.org/10.1080/10643389.2022.2146981
P. R. Yaashikaa, P. S. Kumar, S. Varjani, and A. Saravanan, Biotechnol. Rep. 28, e00570 (2020). https://doi.org/10.1016/j.btre.2020.e00570
H. Lyu, Q. Zhang, and B. Shen, Chemosphere 240, 124842 (2020). https://doi.org/10.1016/j.chemosphere.2019.124842
M. D. Teweldebrihan, M. A. Gnaro, and M. O. Dinka, Front. Environ. Sci. 12, 1375437 (2024). https://doi.org/10.3389/fenvs.2024.1375437
O. N. Avcı, L. Sementa and A. Fortunelli, ACS Catal. 12, 9058 (2022). https://doi.org/10.1021/acscatal.2c01534
Article CAS PubMed PubMed Central Google Scholar
H. Liang, C. Zhu, A. Wang, et al., Carbon Res. 3, 2 (2024). https://doi.org/10.1007/s44246-023-00094-w
M. Gabal, S. Kosa, and T. Muttairi, Ceram. Int. 40, 675 (2014). https://doi.org/10.1016/j.ceramint.2013.06.054
S. Briceno and C. Reinoso, Environ. Res. 212, 113470 (2022). https://doi.org/10.1016/j.envres.2022.113470
O. Matos, V. Rhayza, A. Santos, et al., Microchem. J. 181, 107741 (2022). https://doi.org/10.1016/j.microc.2022.107741
S. Verma, T. Das, V. K. Pandey, and B. Verma, J. Mol. Struct. 126615, 133515 (2022). https://doi.org/10.1016/j.molstruc.2022.133515
T. Lazarova, M. Georgieva, D. Tzankov, et al., J. Alloys Compd. 700, 272–283 (2017). https://doi.org/10.1016/j.jallcom.2017.01.055
A. Arimi, L. Megatif, L. Granon, et al., J. Photochem. Photobiol., A 366, 118–126 (2018). https://doi.org/10.1016/j.jphotochem.2018.03.014
M. R. M. Izawa, E. A. Cloutis, T. Rhind, et al., Icarus 300, 392 (2018). https://doi.org/10.1016/j.icarus.2017.09.005
V. Jadhav, P. Chikode, G. Nikam, and S. Sabale, Mater. Today: Proc. 3, 4121 (2016). https://doi.org/10.1016/j.matpr.2016.11.084
N. Shabelskaya, M. Egorova, A. Radjabov, et al., Water 15, 93 (2023). https://doi.org/10.3390/w15010093
Comments (0)