Bioprospecting cultivable bacteria associated with deep sea (mesopelagic) fish of the North Atlantic Ocean

Blockley A, Elliott DR, Roberts AP, Sweet M. Symbiotic microbes from marine invertebrates: driving a new era of natural product drug discovery. Diversity. 2017;9:49. https://doi.org/10.3390/d9040049.

Article  CAS  Google Scholar 

Ngo-Mback MNL, Menkem EZO, Marco HG. Antifungal compounds from microbial symbionts associated with aquatic animals and cellular targets: a review. Pathogens. 2023. https://doi.org/10.3390/pathogens12040617.

Article  PubMed  PubMed Central  Google Scholar 

Ghareeb MA, Tammam MA, El-Demerdash A, Atanasov AG. Insights about clinically approved and preclinically investigated marine natural products. Curr Res Biotechnol. 2020;2:88–102. https://doi.org/10.1016/j.crbiot.2020.09.001.

Article  Google Scholar 

Collins FWJ, Walsh CJ, Gomez-Sala B, Guijarro-García E, Stokes D, Jakobsdóttir KB, et al. The microbiome of deep-sea fish reveals new microbial species and a sparsity of antibiotic resistance genes. Gut microbes. 2021;13:1–13. https://doi.org/10.1080/19490976.2021.1921924.

Article  CAS  PubMed  Google Scholar 

Rawls JF, Samuel BS, Gordon JI. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. PNAS. 2004;101:4596–601. https://doi.org/10.1073/pnas.0400706101.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jisha K, Gayathri G, Gopikrishnan V, Song J, Soytong K, Prabha T. Fish gut microbiota: a source of novel metabolites-a review article. IJAT. 2023;19:459–74.

CAS  Google Scholar 

Uniacke-Lowe S, Stanton C, Hill C, Ross RP. The marine fish gut microbiome as a source of novel bacteriocins. Microorganisms. 2024;12:1346. https://doi.org/10.3390/microorganisms12071346.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Q, Chen Q, Wu Y, Chen Z, Liu Y, Fang Z, et al. Purification, characterization and structural identification of a novel bacteriocin produced by marine original Enterococcus durans YQ-6, and its inhibition of Listeria monocytogenes. LWT. 2023;173: 114329. https://doi.org/10.1016/j.lwt.2022.114329.

Article  CAS  Google Scholar 

Sanchez LM, Wong WR, Riener RM, Schulze CJ, Linington RG. Examining the fish microbiome: vertebrate-derived bacteria as an environmental niche for the discovery of unique marine natural products. PLoS ONE. 2012;7: e35398. https://doi.org/10.1371/journal.pone.0035398.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elbanna AH, Khalil ZG, Bernhardt PV, Capon RJ. Chrysosporazines a-e: P-glycoprotein inhibitory piperazines from an Australian marine fish gastrointestinal tract-derived fungus, Chrysosporium sp. CMB-F214. Org Lett. 2019;21:8097–100. https://doi.org/10.1021/acs.orglett.9b03094.

Article  CAS  PubMed  Google Scholar 

Mohamed OG, Salim AA, Khalil ZG, Elbanna AH, Bernhardt PV, Capon RJ. Chrysosporazines f-m: P-glycoprotein inhibitory phenylpropanoid piperazines from an Australian marine fish derived fungus, Chrysosporium sp. CMB-F294. J Nat Prod. 2020;83:497–504. https://doi.org/10.1021/acs.jnatprod.9b01181.

Article  CAS  PubMed  Google Scholar 

Ghotbi M, Kelting O, Blümel M, Tasdemir D. Gut and gill-associated microbiota of the flatfish European plaice (Pleuronectes platessa): diversity, metabolome and bioactivity against human and aquaculture pathogens. Mar Drugs. 2022;20:1–25. https://doi.org/10.3390/md20090573.

Article  CAS  Google Scholar 

López-Pérez C, Olivar MP, Tuset VM, Bernal A, Hulley PA. Energy density of mesopelagic fishes from the Atlantic Ocean. J Fish Biol. 2023;102:924–35. https://doi.org/10.1111/jfb.15331.

Article  PubMed  Google Scholar 

Franz GP, Warth P, Grunow B, Konstantinidis P. Osteology of the white barracudina, Arctozenus risso (Bonaparte)(Aulopiformes: Paralepididae). Ichthyol Herpetol. 2022;110:115–30. https://doi.org/10.1643/i2020130.

Article  Google Scholar 

Marohn L, Schaber M, Freese M, Pohlmann JD, Wysujack K, Czudaj S, et al. Distribution and diel vertical migration of mesopelagic fishes in the Southern Sargasso Sea — observations through hydroacoustics and stratified catches. Mar Biodivers. 2021;51:87. https://doi.org/10.1007/s12526-021-01216-6.

Article  Google Scholar 

Kapelonis Z, Siapatis A, Machias A, Somarakis S, Markakis K, Giannoulaki M, et al. Seasonal patterns in the mesopelagic fish community and associated deep scattering layers of an enclosed deep basin. Sci Rep. 2023;13:17890. https://doi.org/10.1038/s41598-023-44765-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reading J, Horton T. Mesopelagic fishes of the North-West African upwelling from the discovery collections. Biodivers Data J. 2023;11: e105921. https://doi.org/10.3897/BDJ.11.e105921.

Article  PubMed  PubMed Central  Google Scholar 

Buonocore F, Gerdol M. Alternative adaptive immunity strategies: coelacanth, cod and shark immunity. Mol Immunol. 2016;69:157–69. https://doi.org/10.1016/j.molimm.2015.09.003.

Article  CAS  PubMed  Google Scholar 

Romano G, Costantini M, Sansone C, Lauritano C, Ruocco N, Ianora A. Marine microorganisms as a promising and sustainable source of bioactive molecules. Mar Environ Res. 2017;128:58–69. https://doi.org/10.1016/j.marenvres.2016.05.002.

Article  CAS  PubMed  Google Scholar 

Collins FWJ. An investigation into antimicrobial production in the Lactobacillus genus and the fish microbiome. Cork: University College Cork; 2019.

Google Scholar 

Uniacke-Lowe S, Collins FWJ, Hill C, Ross RP. Bioactivity screening and genomic analysis reveals deep-sea fish microbiome isolates as sources of novel antimicrobials. Mar Drugs. 2023;21: 444. https://doi.org/10.3390/md21080444.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iacuaniello CM. An examination of intestinal microbiota of mesopelagic fish reveals microbial community diversity across fish families. La Jolla: University of California San Diego; 2019.

Google Scholar 

Nothias L-F, Petras D, Schmid R, Dührkop K, Rainer J, Sarvepalli A, et al. Feature-based molecular networking in the GNPS analysis environment. Nat Methods. 2020;17:905–8. https://doi.org/10.1038/s41592-020-0933-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dührkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik AV, Meusel M, et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat Methods. 2019;16:299–302. https://doi.org/10.1038/s41592-019-0344-8.

Article  CAS  PubMed  Google Scholar 

Dührkop K, Shen H, Meusel M, Rousu J, Böcker S. Searching molecular structure databases with tandem mass spectra using CSI: FingerID. Proc Natl Acad Sci U S A. 2015;112:12580–5.

Article  PubMed  PubMed Central  Google Scholar 

Dührkop K, Nothias L-F, Fleischauer M, Reher R, Ludwig M, Hoffmann MA, et al. Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat Biotechnol. 2020. https://doi.org/10.1038/s41587-020-0740-8.

Article  PubMed  Google Scholar 

Kim HW, Wang M, Leber CA, Nothias L-F, Reher R, Kang KB, et al. NPclassifier: a deep neural network-based structural classification tool for natural products. J Nat Prod. 2021;84:2795–807. https://doi.org/10.1021/acs.jnatprod.1c00399.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol. 2016;34:828–37. https://doi.org/10.1038/nbt.3597.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu B, Lu R, Chen N, Yuan H, Zhao J, Zhao Y. Research progress on activity and biosynthesis of diketopiperazines. Mini-Rev Org Chem. 2024;21:891–906. https://doi.org/10.2174/1570193X20666230512162559.

Article  CAS  Google Scholar 

Vitale GA, January GG, Oppong-Danquah E, Della Sala G, Palma Esposito F, Tasdemir D, et al. A metabologenomics approach to unlock the metabolome of the novel Antarctic deep-sea isolate Lacinutrix shetlandiensis sp. nov. WUR7. PNAS Nexus. 2023. https://doi.org/10.1093/pnasnexus/pgad221.

Article 

Comments (0)

No login
gif