Shen D, Wu G, Suk H-I (2017) Deep learning in medical image analysis. Annu Rev Biomed Eng 19(1):221–248
Article CAS PubMed PubMed Central Google Scholar
Molteni R (2021) The way we were (and how we got here): fifty years of technology changes in dental and maxillofacial radiology. Dentomaxillofac Radiol 50(1):20200133. https://doi.org/10.1259/dmfr.20200133
Jacobs R, Fontenele RC, Lahoud P, Shujaat S, Bornstein MM (2024) Radiographic diagnosis of periodontal diseases–Current evidence versus innovations. Periodontol 2000 95(1):51–69
Karkle A, Slaidina A, Zolovs M, Vaskevica A, Meistere D, Bokvalde Z, Neimane L (2024) comparative analysis of examination methods for periapical lesion diagnostics: assessing cone-beam computer tomography, ultrasound, and periapical radiography. Diagnostics (Basel, Switzerland). https://doi.org/10.3390/diagnostics14070766
Kripal K, Dileep A (2020) Role of Radiographic Evolution: An Aid to Diagnose Periodontal. Periodontal Disease: Diagnostic and Adjunctive Non-surgical Considerations: 49
Minervini G, Franco R, Marrapodi MM, Ronsivalle V, Shapira I, Cicciù M (2023) Prevalence of temporomandibular disorders in subjects affected by Parkinson disease: a systematic review and metanalysis. J Oral Rehabil 50(9):877–885
Article CAS PubMed Google Scholar
Priyank H, Viswanath B, Sriwastwa A, Hegde P, Abdul NS, Golgeri MS, Shivakumar G, Mathur H (2023) Radiographical evaluation of morphological alterations of mandibular third molars: a cone beam computed tomography (CBCT) Study. Cureus. https://doi.org/10.7759/cureus.34114
Article PubMed PubMed Central Google Scholar
Lee JH, Kim DH, Jeong SN (2020) Diagnosis of cystic lesions using panoramic and cone beam computed tomographic images based on deep learning neural network. Oral Dis 26(1):152–158
Setzer FC, Shi KJ, Zhang Z, Yan H, Yoon H, Mupparapu M, Li J (2020) Artificial intelligence for the computer-aided detection of periapical lesions in cone-beam computed tomographic images. J Endodont 46(7):987–993
Heidari Z, Mahmoudzadeh-Sagheb H, Moghtaderi A, Ramazanpour N, Gorgich EAC (2020) Structural changes in the brain of patients with relapsing-remitting multiple sclerosis compared to controls: a MRI-based stereological study (1971-). Irish J Med Sci 189:1421–1427
Heidari Z, Mahmoudzadeh-Sagheb H, Shakiba M, Gorgich EAC (2023) Brain structural changes in schizophrenia patients compared to the control: an MRI-based Cavalieri’s method. Basic Clin Neurosci 14(3):355
Article PubMed PubMed Central Google Scholar
Litjens G, Sánchez CI, Timofeeva N, Hermsen M, Nagtegaal I, Kovacs I, Hulsbergen-Van De Kaa C, Bult P, Van Ginneken B, Van Der Laak J (2016) Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci Rep 6(1):26286
Article CAS PubMed PubMed Central Google Scholar
Singh NK, Raza K (2022) Progress in deep learning-based dental and maxillofacial image analysis: a systematic review. Expert Syst Appl 199:116968
Miragall MF, Knoedler S, Kauke-Navarro M, Saadoun R, Grabenhorst A, Grill FD, Ritschl LM, Fichter AM, Safi A-F, Knoedler L (2023) Face the future—artificial intelligence in oral and maxillofacial surgery. J Clin Med 12(21):6843
Article PubMed PubMed Central Google Scholar
Joda T, Yeung A, Hung K, Zitzmann N, Bornstein M (2021) Disruptive innovation in dentistry: what it is and what could be next. J Dent Res 100(5):448–453
Article CAS PubMed Google Scholar
Fa S, Samek W, Krois J (2020) Artificial intelligence in dentistry: chances and challenges. J Dent Res 99(7):769–774
Patil S, Albogami S, Hosmani J, Mujoo S, Kamil MA, Mansour MA, Abdul HN, Bhandi S, Ahmed SS (2022) Artificial intelligence in the diagnosis of oral diseases: applications and pitfalls. Diagnostics 12(5):1029
Article CAS PubMed PubMed Central Google Scholar
Kang J, Le VNT, Lee D-W, Kim S (2024) Diagnosing oral and maxillofacial diseases using deep learning. Sci Rep 14(1):2497
Article CAS PubMed PubMed Central Google Scholar
Yan K-X, Liu L, Li H (2021) Application of machine learning in oral and maxillofacial surgery. Artif Intell Med Imag 2(6):104–114
Khanagar SB, Al-Ehaideb A, Maganur PC, Vishwanathaiah S, Patil S, Baeshen HA, Sarode SC, Bhandi S (2021) Developments, application, and performance of artificial intelligence in dentistry–A systematic review. J Dent Sci 16(1):508–522
Katsumata A (2023) Deep learning and artificial intelligence in dental diagnostic imaging. Japan Dent Scie Rev 59:329–333
Ren R, Luo H, Su C, Yao Y, Liao W (2021) Machine learning in dental, oral and craniofacial imaging: a review of recent progress. PeerJ 9:e11451
Article PubMed PubMed Central Google Scholar
Miryala G, Khan Y, Ramalingam NT, Sevugaperumal B, Soman M, Padmanabhan A (2023) Revolutionizing dental imaging: a comprehensive study on the integration of artificial intelligence in dental and maxillofacial radiology. Cureus. https://doi.org/10.7759/cureus.50292
Article PubMed PubMed Central Google Scholar
Zawacki-Richter O, Marín VI, Bond M, Gouverneur F (2019) Systematic review of research on artificial intelligence applications in higher education–where are the educators? Int J Educ Technol High Educ 16(1):1–27
Mazziotti S, Blandino A, Gaeta M, Bottari A, Sofia C, D’Angelo T, Ascenti G (2015) Postprocessing in maxillofacial multidetector computed tomography. Can Assoc Radiol J 66(3):212–222
Stadlinger B, Valdec S, Wacht L, Essig H, Winklhofer S (2020) 3D-cinematic rendering for dental and maxillofacial imaging. Dentomaxillofac Radiol 49(1):20190249
Fukuda M, Inamoto K, Shibata N, Ariji Y, Yanashita Y, Kutsuna S, Nakata K, Katsumata A, Fujita H, Ariji E (2020) Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography. Oral Radiol 36:337–343
Lee J-H, Kim D-H, Jeong S-N, Choi S-H (2018) Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent 77:106–111
Cui Z, Fang Y, Mei L, Zhang B, Yu B, Liu J, Jiang C, Sun Y, Ma L, Huang J, Liu Y, Zhao Y, Lian C, Ding Z, Zhu M, Shen D (2022) A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images. Nat Commun 13(1):2096. https://doi.org/10.1038/s41467-022-29637-2
Article CAS PubMed PubMed Central Google Scholar
Ariji Y, Kise Y, Fukuda M, Kuwada C, Ariji E (2022) Segmentation of metastatic cervical lymph nodes from CT images of oral cancers using deep-learning technology. Dentomaxillofac Radiol 51(4):20210515
Article PubMed PubMed Central Google Scholar
Kazimierczak N, Kazimierczak W, Serafin Z, Nowicki P, Nożewski J, Janiszewska-Olszowska J (2024) AI in orthodontics: revolutionizing diagnostics and treatment planning—A comprehensive review. J Clin Med 13(2):344
Article PubMed PubMed Central Google Scholar
Choi E, Lee S, Jeong E, Shin S, Park H, Youm S, Son Y, Pang K (2022) Artificial intelligence in positioning between mandibular third molar and inferior alveolar nerve on panoramic radiography. Sci Rep 12(1):2456
Article CAS PubMed PubMed Central Google Scholar
Mori M, Ariji Y, Fukuda M, Kitano T, Funakoshi T, Nishiyama W, Kohinata K, Iida Y, Ariji E, Katsumata A (2022) Performance of deep learning technology for evaluation of positioning quality in periapical radiography of the maxillary canine. Oral Radiol 38(1):147–154. https://doi.org/10.1007/s11282-021-00538-2
Comments (0)