Neuro-immune cross-talk in cancer

Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao, L., Singh, V., Ricca, A. & Lee, P. Survival benefit of pembrolizumab for patients with pancreatic adenocarcinoma: a case series. J. Med. Cases 13, 240–243 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Storandt, M. H., Tran, N., Martin, N. & Jatoi, A. Pembrolizumab near the end of life in patients with metastatic pancreatic cancer: a multi-site consecutive series to examine survival and patient treatment burden. Cancer Immunol. Immunother. 72, 2515–2520 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Emens, L. A. et al. Challenges and opportunities in cancer immunotherapy: a Society for Immunotherapy of Cancer (SITC) strategic vision. J. Immunother. Cancer 12, e009063 (2024).

Article  PubMed  PubMed Central  Google Scholar 

Young, H. H. On the presence of nerves in tumors and of other structures in them as revealed by a modification of Ehrlich’s method of ‘vital staining’ with methylene blue. J. Exp. Med. 2, 1–12 (1897).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baraldi, J. H., Martyn, G. V., Shurin, G. V. & Shurin, M. R. Tumor innervation: history, methodologies, and significance. Cancers 14, 1979 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lucido, C. T. et al. Innervation of cervical carcinoma is mediated by cancer-derived exosomes. Gynecol. Oncol. 154, 228–235 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao, Q. et al. The clinicopathological significance of neurogenesis in breast cancer. BMC Cancer 14, 484 (2014). This study provides early evidence suggesting that tumour denervation modulates tumour growth.

Article  PubMed  PubMed Central  Google Scholar 

Ayala, G. E. et al. Cancer-related axonogenesis and neurogenesis in prostate cancer. Clin. Cancer Res. 14, 7593–7603 (2008). This seminal study serves as an early example of human tumour innervation, identifying semaphorin 4F as a molecular driver of this process.

Article  CAS  PubMed  Google Scholar 

Entschladen, F., Palm, D., Lang, K., Drell, T. L. & Zaenker, K. S. Neoneurogenesis: tumors may initiate their own innervation by the release of neurotrophic factors in analogy to lymphangiogenesis and neoangiogenesis. Med. Hypotheses 67, 33–35 (2006).

Article  CAS  PubMed  Google Scholar 

Madeo, M. et al. Cancer exosomes induce tumor innervation. Nat. Commun. 9, 4284 (2018). This article highlights cancer-derived exosomes as a driver of tumour innervation.

Article  PubMed  PubMed Central  Google Scholar 

Amit, M. et al. Loss of p53 drives neuron reprogramming in head and neck cancer. Nature 578, 449–454 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mauffrey, P. et al. Progenitors from the central nervous system drive neurogenesis in cancer. Nature 569, 672–678 (2019).

Article  CAS  PubMed  Google Scholar 

Dobrenis, K., Gauthier, L. R., Barroca, V. & Magnon, C. Granulocyte colony‐stimulating factor off‐target effect on nerve outgrowth promotes prostate cancer development. Int. J. Cancer 136, 982–988 (2015).

Article  CAS  PubMed  Google Scholar 

Hanahan, D. & Monje, M. Cancer hallmarks intersect with neuroscience in the tumor microenvironment. Cancer Cell 41, 573–580 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Winkler, F. et al. Cancer neuroscience: state of the field, emerging directions. Cell 186, 1689–1707 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Magnon, C. & Hondermarck, H. The neural addiction of cancer. Nat. Rev. Cancer 23, 317–334 (2023).

Article  CAS  PubMed  Google Scholar 

Borovikova, L. V. et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458–462 (2000).

Article  CAS  PubMed  Google Scholar 

Zhao, C.-M. et al. Denervation suppresses gastric tumorigenesis. Sci. Transl. Med. 6, 250ra115 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Khanmammadova, N., Islam, S., Sharma, P. & Amit, M. Neuro-immune interactions and immuno-oncology. Trends Cancer 9, 636–649 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saloman, J. L. et al. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer. Proc. Natl Acad. Sci. USA 113, 3078–3083 (2016). This work is the first demonstration that denervation of nociceptor neurons reduces tumour growth.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Erin, N. et al. Activation of neuroimmune pathways increases therapeutic effects of radiotherapy on poorly differentiated breast carcinoma. Brain. Behav. Immun. 48, 174–185 (2015).

Article  CAS  PubMed  Google Scholar 

Magnon, C. et al. Autonomic nerve development contributes to prostate cancer progression. Science 341, 1236361 (2013). This article presents the first demonstration that tumours are innervated and that this innervation controls tumour growth.

Article  PubMed  Google Scholar 

Renz, B. W. et al. β2 adrenergic-neurotrophin feedforward loop promotes pancreatic cancer. Cancer Cell 33, 75–90.e7 (2018).

Article  CAS  PubMed  Google Scholar 

Partecke, L. I. et al. Subdiaphragmatic vagotomy promotes tumor growth and reduces survival via TNFα in a murine pancreatic cancer model. Oncotarget 8, 22501–22512 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Sampson, J. H., Gunn, M. D., Fecci, P. E. & Ashley, D. M. Brain immunology and immunotherapy in brain tumours. Nat. Rev. Cancer 20, 12–25 (2020).

Article  CAS  PubMed  Google Scholar 

Strickland, M. R., Alvarez-Breckenridge, C., Gainor, J. F. & Brastianos, P. K. Tumor immune microenvironment of brain metastases: toward unlocking antitumor immunity. Cancer Discov. 12, 1199–1216 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Basbaum, A. I. & Julius, D. Toward better pain control. Sci. Am. 294, 60–67 (2006).

Article  CAS  PubMed  Google Scholar 

Julius, D. & Basbaum, A. I. Molecular mechanisms of nociception. Nature 413, 203–210 (2001).

Article  CAS  PubMed  Google Scholar 

Caterina, M. J. & Julius, D. The vanilloid receptor: a molecular gateway to the pain pathway. Annu. Rev. Neurosci. 24, 487–517 (2001).

Article  CAS  PubMed  Google Scholar 

Story, G. M. et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112, 819–829 (2003).

Comments (0)

No login
gif