Endoplasmic reticulum stress responses in anticancer immunity

Hetz, C., Zhang, K. & Kaufman, R. J. Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol. 21, 421–438 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, X. & Cubillos-Ruiz, J. R. Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat. Rev. Cancer 21, 71–88 (2021).

Article  CAS  PubMed  Google Scholar 

Chen, X. et al. XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway. Nature 508, 103–107 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oakes, S. A. Endoplasmic reticulum stress signaling in cancer cells. Am. J. Pathol. 190, 934–946 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salvagno, C., Mandula, J. K., Rodriguez, P. C. & Cubillos-Ruiz, J. R. Decoding endoplasmic reticulum stress signals in cancer cells and antitumor immunity. Trends Cancer 8, 930–943 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, W. et al. Endoplasmic reticulum stress — a key guardian in cancer. Cell Death Discov. 10, 343 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Conza, G., Ho, P. C., Cubillos-Ruiz, J. R. & Huang, S. C. Control of immune cell function by the unfolded protein response. Nat. Rev. Immunol. 23, 546–562 (2023).

Article  CAS  PubMed  Google Scholar 

Yang, M., Cui, M., Sun, Y., Liu, S. & Jiang, W. Mechanisms, combination therapy, and biomarkers in cancer immunotherapy resistance. Cell Commun. Signal. 22, 338 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marei, H. E., Hasan, A., Pozzoli, G. & Cenciarelli, C. Cancer immunotherapy with immune checkpoint inhibitors (ICIs): potential, mechanisms of resistance, and strategies for reinvigorating T cell responsiveness when resistance is acquired. Cancer Cell Int. 23, 64 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ulianich, L. et al. ER stress impairs MHC Class I surface expression and increases susceptibility of thyroid cells to NK-mediated cytotoxicity. Biochim. Biophys. Acta 1812, 431–438 (2011).

Article  CAS  PubMed  Google Scholar 

Hwang, S. M. et al. Transgelin 2 guards T cell lipid metabolism and antitumour function. Nature 635, 1010–1018 (2024). This study demonstrated that ER stress-driven IRE1a–XBP1s silences transgelin 2, a cytoskeletal element that is critical for T cell lipid metabolism and antitumour function.

Article  PubMed  Google Scholar 

Song, M. et al. IRE1alpha-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature 562, 423–428 (2018). This report uncovered that aberrant IRE1α–XBP1s activation curtails T cell mitochondrial respiration by inhibiting glutamine uptake and utilization.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma, X. et al. Cholesterol induces CD8+ T cell exhaustion in the tumor microenvironment. Cell Metab. 30, 143–156.e145 (2019). This study found that high cholesterol levels in the TME activate XBP1s-dependent PD1 induction in infiltrating T cells, thereby triggering exhaustion.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He, J., Zhou, Y. & Sun, L. Emerging mechanisms of the unfolded protein response in therapeutic resistance: from chemotherapy to immunotherapy. Cell Commun. Signal. 22, 89 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bartoszewska, S., Sławski, J., Collawn, J. F. & Bartoszewski, R. Dual RNase activity of IRE1 as a target for anticancer therapies. J. Cell Commun. Signal. 17, 1145–1161 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andrews, A. M., Tennant, M. D. & Thaxton, J. E. Stress relief for cancer immunotherapy: implications for the ER stress response in tumor immunity. Cancer Immunol. Immunother. 70, 1165–1175 (2021).

Article  CAS  PubMed  Google Scholar 

US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03950570 (2019).

US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04834778 (2021).

Stokes, M. E. et al. PERK inhibition by HC-5404 sensitizes renal cell carcinoma tumor models to antiangiogenic tyrosine kinase inhibitors. Clin. Cancer Res. 29, 4870–4882 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Acosta-Alvear, D., Harnoss, J. M., Walter, P. & Ashkenazi, A. Homeostasis control in health and disease by the unfolded protein response. Nat. Rev. Mol. Cell Biol. 26, 193–212 (2025).

Article  CAS  PubMed  Google Scholar 

Caine, J. J. & Geracioti, T. D. Taurine, energy drinks, and neuroendocrine effects. Cleve. Clin. J. Med. 83, 895–904 (2016).

Article  PubMed  Google Scholar 

Wojcik, O. P., Koenig, K. L., Zeleniuch-Jacquotte, A., Costa, M. & Chen, Y. The potential protective effects of taurine on coronary heart disease. Atherosclerosis 208, 19–25 (2010).

Article  CAS  PubMed  Google Scholar 

Marcinkiewicz, J. & Kontny, E. Taurine and inflammatory diseases. Amino Acids 46, 7–20 (2014).

Article  CAS  PubMed  Google Scholar 

Seneff, S. & Kyriakopoulos, A. M. Taurine prevents mitochondrial dysfunction and protects mitochondria from reactive oxygen species and deuterium toxicity. Amino Acids 57, 6 (2025).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Surai, P. F., Earle-Payne, K. & Kidd, M. T. Taurine as a natural antioxidant: from direct antioxidant effects to protective action in various toxicological models. Antioxidants 10, 1876 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, M., Wey, S., Zhang, Y., Ye, R. & Lee, A. S. Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxid. Redox Signal. 11, 2307–2316 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jong, C. J., Ito, T., Azuma, J. & Schaffer, S. Taurine depletion decreases GRP78 expression and downregulates perk-dependent activation of the unfolded protein response. Adv. Exp. Med. Biol. 803, 571–579 (2015).

Article  CAS  PubMed  Google Scholar 

Miyazaki, T. et al. Impaired bile acid metabolism with defectives of mitochondrial–tRNA taurine modification and bile acid taurine conjugation in the taurine depleted cats. Sci. Rep. 10, 4915 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ridlon, J. M., Harris, S. C., Bhowmik, S., Kang, D. J. & Hylemon, P. B. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 7, 22–39 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, M. H. et al. How bile acids and the microbiota interact to shape host immunity. Nat. Rev. Immunol. 24, 798–809 (2024).

Article  CAS  PubMed  Google Scholar 

Sharma, R., Quilty, F., Gilmer, J. F., Long, A. & Byrne, A. M. Unconjugated secondary bile acids activate the unfolded protein response and induce golgi fragmentation via a src-kinase-dependant mechanism. Oncotarget 8, 967–978 (2017).

Comments (0)

No login
gif