Hetz, C., Zhang, K. & Kaufman, R. J. Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol. 21, 421–438 (2020).
Article CAS PubMed PubMed Central Google Scholar
Chen, X. & Cubillos-Ruiz, J. R. Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat. Rev. Cancer 21, 71–88 (2021).
Article CAS PubMed Google Scholar
Chen, X. et al. XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway. Nature 508, 103–107 (2014).
Article CAS PubMed PubMed Central Google Scholar
Oakes, S. A. Endoplasmic reticulum stress signaling in cancer cells. Am. J. Pathol. 190, 934–946 (2020).
Article CAS PubMed PubMed Central Google Scholar
Salvagno, C., Mandula, J. K., Rodriguez, P. C. & Cubillos-Ruiz, J. R. Decoding endoplasmic reticulum stress signals in cancer cells and antitumor immunity. Trends Cancer 8, 930–943 (2022).
Article CAS PubMed PubMed Central Google Scholar
Zhang, W. et al. Endoplasmic reticulum stress — a key guardian in cancer. Cell Death Discov. 10, 343 (2024).
Article CAS PubMed PubMed Central Google Scholar
Di Conza, G., Ho, P. C., Cubillos-Ruiz, J. R. & Huang, S. C. Control of immune cell function by the unfolded protein response. Nat. Rev. Immunol. 23, 546–562 (2023).
Article CAS PubMed Google Scholar
Yang, M., Cui, M., Sun, Y., Liu, S. & Jiang, W. Mechanisms, combination therapy, and biomarkers in cancer immunotherapy resistance. Cell Commun. Signal. 22, 338 (2024).
Article CAS PubMed PubMed Central Google Scholar
Marei, H. E., Hasan, A., Pozzoli, G. & Cenciarelli, C. Cancer immunotherapy with immune checkpoint inhibitors (ICIs): potential, mechanisms of resistance, and strategies for reinvigorating T cell responsiveness when resistance is acquired. Cancer Cell Int. 23, 64 (2023).
Article CAS PubMed PubMed Central Google Scholar
Ulianich, L. et al. ER stress impairs MHC Class I surface expression and increases susceptibility of thyroid cells to NK-mediated cytotoxicity. Biochim. Biophys. Acta 1812, 431–438 (2011).
Article CAS PubMed Google Scholar
Hwang, S. M. et al. Transgelin 2 guards T cell lipid metabolism and antitumour function. Nature 635, 1010–1018 (2024). This study demonstrated that ER stress-driven IRE1a–XBP1s silences transgelin 2, a cytoskeletal element that is critical for T cell lipid metabolism and antitumour function.
Song, M. et al. IRE1alpha-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature 562, 423–428 (2018). This report uncovered that aberrant IRE1α–XBP1s activation curtails T cell mitochondrial respiration by inhibiting glutamine uptake and utilization.
Article CAS PubMed PubMed Central Google Scholar
Ma, X. et al. Cholesterol induces CD8+ T cell exhaustion in the tumor microenvironment. Cell Metab. 30, 143–156.e145 (2019). This study found that high cholesterol levels in the TME activate XBP1s-dependent PD1 induction in infiltrating T cells, thereby triggering exhaustion.
Article CAS PubMed PubMed Central Google Scholar
He, J., Zhou, Y. & Sun, L. Emerging mechanisms of the unfolded protein response in therapeutic resistance: from chemotherapy to immunotherapy. Cell Commun. Signal. 22, 89 (2024).
Article CAS PubMed PubMed Central Google Scholar
Bartoszewska, S., Sławski, J., Collawn, J. F. & Bartoszewski, R. Dual RNase activity of IRE1 as a target for anticancer therapies. J. Cell Commun. Signal. 17, 1145–1161 (2023).
Article CAS PubMed PubMed Central Google Scholar
Andrews, A. M., Tennant, M. D. & Thaxton, J. E. Stress relief for cancer immunotherapy: implications for the ER stress response in tumor immunity. Cancer Immunol. Immunother. 70, 1165–1175 (2021).
Article CAS PubMed Google Scholar
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03950570 (2019).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04834778 (2021).
Stokes, M. E. et al. PERK inhibition by HC-5404 sensitizes renal cell carcinoma tumor models to antiangiogenic tyrosine kinase inhibitors. Clin. Cancer Res. 29, 4870–4882 (2023).
Article CAS PubMed PubMed Central Google Scholar
Acosta-Alvear, D., Harnoss, J. M., Walter, P. & Ashkenazi, A. Homeostasis control in health and disease by the unfolded protein response. Nat. Rev. Mol. Cell Biol. 26, 193–212 (2025).
Article CAS PubMed Google Scholar
Caine, J. J. & Geracioti, T. D. Taurine, energy drinks, and neuroendocrine effects. Cleve. Clin. J. Med. 83, 895–904 (2016).
Wojcik, O. P., Koenig, K. L., Zeleniuch-Jacquotte, A., Costa, M. & Chen, Y. The potential protective effects of taurine on coronary heart disease. Atherosclerosis 208, 19–25 (2010).
Article CAS PubMed Google Scholar
Marcinkiewicz, J. & Kontny, E. Taurine and inflammatory diseases. Amino Acids 46, 7–20 (2014).
Article CAS PubMed Google Scholar
Seneff, S. & Kyriakopoulos, A. M. Taurine prevents mitochondrial dysfunction and protects mitochondria from reactive oxygen species and deuterium toxicity. Amino Acids 57, 6 (2025).
Article CAS PubMed PubMed Central Google Scholar
Surai, P. F., Earle-Payne, K. & Kidd, M. T. Taurine as a natural antioxidant: from direct antioxidant effects to protective action in various toxicological models. Antioxidants 10, 1876 (2021).
Article CAS PubMed PubMed Central Google Scholar
Wang, M., Wey, S., Zhang, Y., Ye, R. & Lee, A. S. Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxid. Redox Signal. 11, 2307–2316 (2009).
Article CAS PubMed PubMed Central Google Scholar
Jong, C. J., Ito, T., Azuma, J. & Schaffer, S. Taurine depletion decreases GRP78 expression and downregulates perk-dependent activation of the unfolded protein response. Adv. Exp. Med. Biol. 803, 571–579 (2015).
Article CAS PubMed Google Scholar
Miyazaki, T. et al. Impaired bile acid metabolism with defectives of mitochondrial–tRNA taurine modification and bile acid taurine conjugation in the taurine depleted cats. Sci. Rep. 10, 4915 (2020).
Article CAS PubMed PubMed Central Google Scholar
Ridlon, J. M., Harris, S. C., Bhowmik, S., Kang, D. J. & Hylemon, P. B. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 7, 22–39 (2016).
Article CAS PubMed PubMed Central Google Scholar
Lee, M. H. et al. How bile acids and the microbiota interact to shape host immunity. Nat. Rev. Immunol. 24, 798–809 (2024).
Article CAS PubMed Google Scholar
Sharma, R., Quilty, F., Gilmer, J. F., Long, A. & Byrne, A. M. Unconjugated secondary bile acids activate the unfolded protein response and induce golgi fragmentation via a src-kinase-dependant mechanism. Oncotarget 8, 967–978 (2017).
Comments (0)