Microbial Cell, Vol. 12, No. 1, pp. 157 - 172; doi: 10.15698/mic2025.06.853
Janaína de Freitas Nascimento1, María Julia Barisón1, Gabriela Torres Montanaro1, Letícia Marchese1, Rodolpho Ornitz Oliveira Souza1, Letícia Sophia Silva2, Alessandra Aparecida Guarnieri2 and Ariel Mariano Silber1
Trypanosoma cruzi, the causing agent of Chagas disease, is the only known trypanosomatid pathogenic to humans having a complete histidine to glutamate pathway, which involves a series of four enzymatic reactions that convert histidine into downstream metabolites, including urocanate, 4-imidazolone-5-propionate, N-formimino-L-glutamate and L-glutamate. Recent studies have highlighted the importance of this pathway in ATP production, redox balance, and the maintenance of cellular homeostasis in T. cruzi. In this work, we focus on the first step of the histidine degradation pathway, which is performed by the enzyme histidine ammonia lyase. Here we determined the kinetic and biochemical parameters of the T. cruzi histidine ammonia-lyase. By generating null mutants of this enzyme using CRISPR-Cas9 we observed that disruption of the first step of the histidine degradation pathway completely abolishes the capability of this parasite to metabolise histidine, compromising the use of this amino acid as an energy and carbon source. Additionally, we showed that the knockout of the histidine ammonia lyase affects metacyclogenesis when histidine is the only metabolizable source and diminishes trypomastigote infection in vitro.
For full text please see the pdf.
SUPPLEMENTAL INFORMATIONDownload Supplemental Information
© 2025
Knocking out histidine ammonia-lyase by using CRISPR-Cas9 abolishes histidine role in the bioenergetics and the life cycle of Trypanosoma cruzi by de Freitas Nascimento et al is licensed under a Creative Commons Attribution 4.0 International License.
Comments (0)