Crossover patterning through condensation and coarsening of pro-crossover factors

Mercier, R., Mézard, C., Jenczewski, E., Macaisne, N. & Grelon, M. The molecular biology of meiosis in plants. Annu. Rev. Plant Biol. 66, 297–327 (2015).

Article  CAS  PubMed  Google Scholar 

Muller, H. J. The mechanism of crossing-over. Am. Nat. 50, 193–221 (1916).

Article  Google Scholar 

Sturtevant, A. H. The behavior of the chromosomes as studied through linkage. Z. Indukt. Abstamm. Vererbungslehre 13, 234–287 (1915).

Google Scholar 

Carpenter, A. T. Electron microscopy of meiosis in Drosophila melanogaster females: II. The recombination nodule–a recombination-associated structure at pachytene? Proc. Natl Acad. Sci. USA 72, 3186–3189 (1975).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carpenter, A. T. Synaptonemal complex and recombination nodules in wild-type Drosophila melanogaster females. Genetics 92, 511–541 (1979).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carpenter, A. T. Recombination nodules and the mechanism of crossing-over in Drosophila. Symp. Soc. Exp. Biol. 38, 233–243 (1984).

CAS  PubMed  Google Scholar 

von Wettstein, D., Rasmussen, S. W. & Holm, P. B. The synaptonemal complex in genetic segregation. Annu. Rev. Genet. 18, 331–411 (1984).

Article  Google Scholar 

Anderson, L. K. & Stack, S. M. Recombination nodules in plants. Cytogenet. Genome Res. 109, 198–204 (2005).

Article  CAS  PubMed  Google Scholar 

Pazhayam, N. M., Turcotte, C. A. & Sekelsky, J. Meiotic crossover patterning. Front. Cell Dev. Biol. 9, 1940 (2021).

Article  Google Scholar 

Colaiácovo, M. P. et al. Synaptonemal complex assembly in C. elegans is dispensable for loading strand-exchange proteins but critical for proper completion of recombination. Dev. Cell 5, 463–474 (2003).

Article  PubMed  Google Scholar 

MacQueen, A. J. Synapsis-dependent and -independent mechanisms stabilize homolog pairing during meiotic prophase in C. elegans. Genes Dev. 16, 2428–2442 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kelly, K. O., Dernburg, A. F., Stanfield, G. M. & Villeneuve, A. M. Caenorhabditis elegans msh-5 is required for both normal and radiation-induced meiotic crossing over but not for completion of meiosis. Genetics 156, 617–630 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Agarwal, S. & Roeder, G. S. Zip3 provides a link between recombination enzymes and synaptonemal complex proteins. Cell 102, 245–255 (2000).

Article  CAS  PubMed  Google Scholar 

Chelysheva, L. et al. The Arabidopsis HEI10 is a new ZMM protein related to Zip3. PLoS Genet. 8, e1002799 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nguyen, H., Labella, S., Silva, N., Jantsch, V. & Zetka, M. C. elegans ZHP-4 is required at multiple distinct steps in the formation of crossovers and their transition to segregation competent chiasmata. PLoS Genet. 14, e1007776 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Zhang, L., Köhler, S., Rillo-Bohn, R. & Dernburg, A. F. A compartmentalized signaling network mediates crossover control in meiosis. eLife 7, e30789 (2018).

Article  PubMed  PubMed Central  Google Scholar 

De Muyt, A. et al. E3 ligase Hei10: a multifaceted structure-based signaling molecule with roles within and beyond meiosis. Genes Dev. 28, 1111–1123 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Reynolds, A. et al. RNF212 is a dosage-sensitive regulator of crossing-over during mammalian meiosis. Nat. Genet. 45, 269–278 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qiao, H. et al. Antagonistic roles of ubiquitin ligase HEI10 and SUMO ligase RNF212 regulate meiotic recombination. Nat. Genet. 46, 194–199 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Condezo, Y. B. et al. RNF212B E3 ligase is essential for crossover designation and maturation during male and female meiosis in the mouse. Proc. Natl Acad. Sci. USA 121, e2320995121 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yokoo, R. et al. COSA-1 reveals robust homeostasis and separable licensing and reinforcement steps governing meiotic crossovers. Cell 149, 75–87 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Holloway, J. K., Sun, X., Yokoo, R., Villeneuve, A. M. & Cohen, P. E. Mammalian CNTD1 is critical for meiotic crossover maturation and deselection of excess precrossover sites. J. Cell Biol. 205, 633–641 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ashley, T., Walpita, D. & de Rooij, D. G. Localization of two mammalian cyclin dependent kinases during mammalian meiosis. J. Cell Sci. 114, 685–693 (2001).

Article  CAS  PubMed  Google Scholar 

Haversat, J. et al. Robust designation of meiotic crossover sites by CDK-2 through phosphorylation of the MutSγ complex. Proc. Natl Acad. Sci. USA 119, e2117865119 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jaramillo-Lambert, A., Ellefson, M., Villeneuve, A. M. & Engebrecht, J. Differential timing of S phases, X chromosome replication, and meiotic prophase in the C. elegans germ line. Dev. Biol. 308, 206–221 (2007).

Article  CAS  PubMed  Google Scholar 

Woglar, A. & Villeneuve, A. M. Dynamic architecture of DNA repair complexes and the synaptonemal complex at sites of meiotic recombination. Cell 173, 1678–1691 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhalla, N., Wynne, D. J., Jantsch, V. & Dernburg, A. F. ZHP-3 acts at crossovers to couple meiotic recombination with synaptonemal complex disassembly and bivalent formation in C. elegans. PLoS Genet. 4, e1000235 (2008).

Article  PubMed  PubMed Central  Google Scholar 

Jantsch, V. et al. Targeted gene knockout reveals a role in meiotic recombination for ZHP-3, a Zip3-related protein in Caenorhabditis elegans. Mol. Cell. Biol. 24, 7998–8006 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rog, O., Köhler, S. & Dernburg, A. F. The synaptonemal complex has liquid crystalline properties and spatially regulates meiotic recombination factors. eLife 6, e21455 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Durand, S. et al. Joint control of meiotic crossover patterning by the synaptonemal complex and HEI10 dosage. Nat. Commun. 13, 5999 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fozard, J. A., Morgan, C. & Howard, M. Coarsening dynamics can explain meiotic crossover patterning in both the presence and absence of the synaptonemal complex. eLife 12, e79408 (2023).

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif