YAP maintains the dynamics of TDP-43 condensates and antagonizes TDP-43 pathological aggregates

Lee, E. B., Lee, V. M. & Trojanowski, J. Q. Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat. Rev. Neurosci. 13, 38–50 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

Article  CAS  PubMed  Google Scholar 

McGurk, L. et al. Poly(ADP-ribose) prevents pathological phase separation of TDP-43 by promoting liquid demixing and stress granule localization. Mol. Cell 71, 703–717 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gasset-Rosa, F. et al. Cytoplasmic TDP-43 de-mixing independent of stress granules drives inhibition of nuclear import, loss of nuclear TDP-43, and cell death. Neuron 102, 339–357 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gu, J. et al. Hsp70 chaperones TDP-43 in dynamic, liquid-like phase and prevents it from amyloid aggregation. Cell Res. 31, 1024–1027 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, C. et al. Stress induces dynamic, cytotoxicity-antagonizing TDP-43 nuclear bodies via paraspeckle LncRNA NEAT1-mediated liquid–liquid phase separation. Mol. Cell 79, 443–458 (2020).

Article  CAS  PubMed  Google Scholar 

Yu, H. et al. HSP70 chaperones RNA-free TDP-43 into anisotropic intranuclear liquid spherical shells. Science 371, eabb4309 (2021).

Article  CAS  PubMed  Google Scholar 

Grese, Z. R. et al. Specific RNA interactions promote TDP-43 multivalent phase separation and maintain liquid properties. EMBO Rep. 22, e53632 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perez-Berlanga, M. et al. Loss of TDP-43 oligomerization or RNA binding elicits distinct aggregation patterns. EMBO J. 42, e111719 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taylor, J. P., Brown, R. H. Jr & Cleveland, D. W. Decoding ALS: from genes to mechanism. Nature 539, 197–206 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wolozin, B. & Ivanov, P. Stress granules and neurodegeneration. Nat. Rev. Neurosci. 20, 649–666 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mitrea, D. M., Mittasch, M., Gomes, B. F., Klein, I. A. & Murcko, M. A. Modulating biomolecular condensates: a novel approach to drug discovery. Nat. Rev. Drug Discov. 21, 841–862 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vendruscolo, M. & Fuxreiter, M. Protein condensation diseases: therapeutic opportunities. Nat. Commun. 13, 5550 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Apicco, D. J. et al. Reducing the RNA binding protein TIA1 protects against tau-mediated neurodegeneration in vivo. Nat. Neurosci. 21, 72–80 (2018).

Article  CAS  PubMed  Google Scholar 

Becker, L. A. et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature 544, 367–371 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hurtle, B. T., Xie, L. & Donnelly, C. J. Disrupting pathologic phase transitions in neurodegeneration. J. Clin. Invest. 133, e168549 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Ma, S., Meng, Z., Chen, R. & Guan, K. L. The Hippo Pathway: biology and pathophysiology. Annu. Rev. Biochem. 88, 577–604 (2019).

Article  CAS  PubMed  Google Scholar 

Cai, D. et al. Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression. Nat. Cell Biol. 21, 1578–1589 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu, Y. et al. Phase separation of TAZ compartmentalizes the transcription machinery to promote gene expression. Nat. Cell Biol. 22, 453–464 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shao, Y. et al. A chaperone-like function of FUS ensures TAZ condensate dynamics and transcriptional activation. Nat. Cell Biol. 26, 86–99 (2024).

Article  CAS  PubMed  Google Scholar 

Harvey, K. F., Zhang, X. & Thomas, D. M. The Hippo pathway and human cancer. Nat. Rev. Cancer 13, 246–257 (2013).

Article  CAS  PubMed  Google Scholar 

Irwin, M. et al. A positive feedback loop of Hippo- and c-Jun-amino-terminal kinase signaling pathways regulates amyloid-beta-mediated neurodegeneration. Front. Cell Dev. Biol. 8, 117 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Lee, J. K. et al. MST1 functions as a key modulator of neurodegeneration in a mouse model of ALS. Proc. Natl Acad. Sci. USA 110, 12066–12071 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, W. et al. AMPK modulates Hippo pathway activity to regulate energy homeostasis. Nat. Cell Biol. 17, 490–499 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mo, J. S. et al. Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nat. Cell Biol. 17, 500–510 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Markmiller, S. et al. Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell 172, 590–604 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aulas, A. et al. Stress-specific differences in assembly and composition of stress granules and related foci. J. Cell Sci. 130, 927–937 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jain, S. et al. ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164, 487–498 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Youn, J. Y. et al. High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies. Mol. Cell 69, 517–532 (2018).

Article 

Comments (0)

No login
gif