Single vs Double Index Screws in Thoracolumbar Burst Fractures: A Retrospective Analysis

Katsuura, Y., Osborn, J. M., & Cason, G. W. (2016). The epidemiology of thoracolumbar trauma: A meta-analysis. Journal of Orthopaedics, 13(4), 383–388. https://doi.org/10.1016/j.jor.2016.06.019

Article  PubMed  PubMed Central  Google Scholar 

Sharif, S., Shaikh, Y., Yaman, O., & Zileli, M. (2021). Surgical techniques for thoracolumbar spine fractures: WFNS Spine Committee recommendations. Neurospine, 18(4), 667–680. https://doi.org/10.14245/ns.2142206.253

Article  PubMed  PubMed Central  Google Scholar 

Li, K., Li, Z., Ren, X., et al. (2016). Effect of the percutaneous pedicle screw fixation at the fractured vertebra on the treatment of thoracolumbar fractures. International Orthopaedics, 40(6), 1103–1110. https://doi.org/10.1007/s00264-016-3156-9

Article  PubMed  Google Scholar 

von Elm, E., Altman, D. G., Egger, M., et al. (2008). The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Journal of Clinical Epidemiology, 61(4), 344–349. https://doi.org/10.1016/j.jclinepi.2007.11.008

Article  Google Scholar 

Lee, J. Y., Vaccaro, A. R., Lim, M. R., et al. (2005). Thoracolumbar injury classification and severity score: A new paradigm for the treatment of thoracolumbar spine trauma. Journal of Orthopaedic Science, 10(6), 671–675. https://doi.org/10.1007/s00776-005-0956-y

Article  PubMed  PubMed Central  Google Scholar 

McCormack, T., Karaikovic, E., & Gaines, R. W. (1994). The load sharing classification of spine fractures. Spine, 19(15), 1741–1744. https://doi.org/10.1097/00007632-199408000-00014

Article  CAS  PubMed  Google Scholar 

Kalsi-Ryan, S. (2018). International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) *. In A. R. Vaccaro, C. G. Fisher, & J. R. Wilson (Eds.), 50 Landmark Papers (1st ed., pp. 83–86). CRC Press. https://doi.org/10.1201/9781315154053-16.

Fairbank, J. C. T., & Pynsent, P. B. (2000). The Oswestry Disability Index. Spine, 25(22), 2940.

Article  CAS  PubMed  Google Scholar 

Rasmussen, P. A., Rabin, M. H., Mann, D. C., Perl, J. R., Lorenz, M. A., & Vrbos, L. A. (1994). Reduced transverse spinal area secondary to burst fractures: Is there a relationship to neurologic injury? Journal of Neurotrauma, 11(6), 711–720. https://doi.org/10.1089/neu.1994.11.711

Article  CAS  PubMed  Google Scholar 

Zeng, ZL., Cheng, LM., Li, SZ., et al. (2013). Unilateral versus bilateral pedicle fixation at the level of fracture in the treatment of thoracolumbar fractures with mild to moderate instability. Zhonghua Yi Xue Za Zhi, 93(27), 2117–2121.

PubMed  Google Scholar 

Gurr, K. R., McAfee, P. C., & Shih, C. M. (1988). Biomechanical analysis of posterior instrumentation systems after decompressive laminectomy. An unstable calf-spine model. The Journal of Bone & Joint Surgery, 70(5), 680–691. https://doi.org/10.2106/00004623-198870050-00007

Article  CAS  Google Scholar 

McLain, R. F., Sparling, E., & Benson, D. R. (1993). Early failure of short-segment pedicle instrumentation for thoracolumbar fractures. A preliminary report. The Journal of Bone & Joint Surgery, 75(2), 162–167. https://doi.org/10.2106/00004623-199302000-00002

Article  CAS  Google Scholar 

Alanay, A., Acaroglu, E., Yazici, M., Oznur, A., & Surat, A. (2001). Short-segment pedicle instrumentation of thoracolumbar burst fractures: Does transpedicular intracorporeal grafting prevent early failure? Spine, 26(2), 213–217. https://doi.org/10.1097/00007632-200101150-00017

Article  CAS  PubMed  Google Scholar 

Alvine, G. F., Swain, J. M., Asher, M. A., & Burton, D. C. (2004). Treatment of thoracolumbar burst fractures with variable screw placement or Isola instrumentation and arthrodesis: Case series and literature review. Journal of Spinal Disorders & Techniques, 17(4), 251–264. https://doi.org/10.1097/01.bsd.0000095827.98982.88

Article  Google Scholar 

Knop, C., Bastian, L., Lange, U., Oeser, M., Zdichavsky, M., & Blauth, M. (2002). Complications in surgical treatment of thoracolumbar injuries. European Spine Journal, 11(3), 214–226. https://doi.org/10.1007/s00586-001-0382-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chung, J. Y., & Rhym, I. S. (2018). Short segment transpedicular Cotrel–Dubousset instrumentation including involved vertebra for fractures of thoracic and lumbar spine. The Journal of the Korean Orthopaedic Association, 29(3), 940–948.

Article  Google Scholar 

Jeong, S. T., Cho, S. H., Song, H. R., Koo, K. H., Park, H. B., & Chung, U. H. (2016). Comparison of short and long-segment fusion in thoracic and lumbar fractures. Journal of Korean Society of Spine Surgery, 6(1), 73–80.

Google Scholar 

Park, S. R., Na, H. Y., Kim, J. M., Eun, D. C., & Son, E. Y. (2016). More than 5-year follow-up results of two-level and three-level posterior fixations of thoracolumbar burst fractures with load-sharing scores of seven and eight points. Clinics in Orthopedic Surgery, 8(1), 71–77. https://doi.org/10.4055/cios.2016.8.1.71

Article  PubMed  PubMed Central  Google Scholar 

Deng, L., Zhang, J., Zhou, Q., et al. (2022). Effect of the intermediate pedicle screws and their insertion depth on sagittal balance and functional outcomes of lumbar fracture. Frontiers in Surgery, 9, 905946. https://doi.org/10.3389/fsurg.2022.905946

Article  PubMed  PubMed Central  Google Scholar 

Kapoen, C., Liu, Y., Bloemers, F. W., & Deunk, J. (2020). Pedicle screw fixation of thoracolumbar fractures: Conventional short segment versus short segment with intermediate screws at the fracture level—a systematic review and meta-analysis. European Spine Journal Official Publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society, 29(10), 2491–2504. https://doi.org/10.1007/s00586-020-06479-4

Article  PubMed  Google Scholar 

Anekstein, Y., Brosh, T., & Mirovsky, Y. (2007). Intermediate screws in short segment pedicular fixation for thoracic and lumbar fractures: A biomechanical study. Journal of Spinal Disorders & Techniques, 20(1), 72–77. https://doi.org/10.1097/01.bsd.0000211240.98963.f6

Article  Google Scholar 

Mahar, A., Kim, C., Wedemeyer, M., et al. (2007). Short-segment fixation of lumbar burst fractures using pedicle fixation at the level of the fracture. Spine, 32(14), 1503–1507. https://doi.org/10.1097/BRS.0b013e318067dd24

Article  PubMed  Google Scholar 

Norton, R. P., Milne, E. L., Kaimrajh, D. N., Eismont, F. J., Latta, L. L., & Williams, S. K. (2014). Biomechanical analysis of four- versus six-screw constructs for short-segment pedicle screw and rod instrumentation of unstable thoracolumbar fractures. The Spine Journal, 14(8), 1734–1739. https://doi.org/10.1016/j.spinee.2014.01.035

Article  PubMed  Google Scholar 

Öztürk, A. M., Süer, O., Aydemir, S., Kılıçlı, B., & Akçalı, Ö. (2024). The effect of the size of pedicle screw on the long-term radiological and clinical results of short-segment posterior instrumentation in the management of thoracolumbar vertebral fractures. Acta Orthopaedica et Traumatologica Turcica, 58(1), 20–26. https://doi.org/10.5152/j.aott.2024.23056

Article  PubMed  Google Scholar 

Scholl, B. M., Theiss, S. M., & Kirkpatrick, J. S. (2006). Short segment fixation of thoracolumbar burst fractures. Orthopedics, 29(8), 703–708. https://doi.org/10.3928/01477447-20060801-14

Article  PubMed  Google Scholar 

Kanna, R. M., Shetty, A. P., & Rajasekaran, S. (2015). Posterior fixation including the fractured vertebra for severe unstable thoracolumbar fractures. The Spine Journal, the Official Journal of the North American Spine Society, 15(2), 256–264. https://doi.org/10.1016/j.spinee.2014.09.004

Article  Google Scholar 

Dai, L. Y. (2001). Remodeling of the spinal canal after thoracolumbar burst fractures. Clinical Orthopaedics and Related Research, 382, 119.

Article  Google Scholar 

Sjöström, L., Jacobsson, O., Karlström, G., Pech, P., & Rauschning, W. (1994). Spinal canal remodeling after stabilization of thoracolumbar burst fractures. European Spine Journal, 3(6), 312–317. https://doi.org/10.1007/BF02200143

Article  PubMed  Google Scholar 

Comments (0)

No login
gif