Scheltens P, et al. Alzheimer’s disease. Lancet. 2021;397(10284):1577–90.
Article PubMed PubMed Central CAS Google Scholar
Masters CL, et al. Alzheimer’s disease. Nat Reviews Disease Primers. 2015;1(1):15056.
Serrano-Pozo A, et al. Neuropathological alterations in alzheimer disease. Cold Spring Harbor Perspectives in Medicine; 2011;1(1).
Shackelford DA. DNA end joining activity is reduced in alzheimer’s disease. Neurobiol Aging. 2006;27(4):596–605.
Article PubMed CAS Google Scholar
Mullaart E, et al. Increased levels of DNA breaks in cerebral cortex of alzheimer’s disease patients. Neurobiol Aging. 1990;11(3):169–73.
Article PubMed CAS Google Scholar
Asada-Utsugi M, et al. Failure of DNA double-strand break repair by Tau mediates alzheimer’s disease pathology in vitro. Commun Biology. 2022;5(1):358.
Thadathil N, et al. DNA double-strand break accumulation in alzheimer’s disease: evidence from experimental models and postmortem human brains. Mol Neurobiol. 2021;58(1):118–31.
Hoozemans JJM, et al. The unfolded protein response is activated in alzheimer’s disease. Acta Neuropathol. 2005;110(2):165–72.
Article PubMed CAS Google Scholar
Yoon SO, et al. JNK3 perpetuates metabolic stress induced by Aβ peptides. Neuron. 2012;75(5):824–37.
Article PubMed PubMed Central CAS Google Scholar
Abisambra JF, et al. Tau accumulation activates the unfolded protein response by impairing Endoplasmic Reticulum-Associated degradation. J Neurosci. 2013;33(22):9498–507.
Article PubMed PubMed Central CAS Google Scholar
Ajoolabady A, et al. ER stress and UPR in alzheimer’s disease: mechanisms, pathogenesis, treatments. Cell Death Dis. 2022;13(8):706.
Article PubMed PubMed Central Google Scholar
Nixon RA, et al. Extensive involvement of autophagy in alzheimer disease: an Immuno-Electron microscopy study. J Neuropathology Experimental Neurol. 2005;64(2):113–22.
Yu WH, et al. Macroautophagy—a novel β-amyloid peptide-generating pathway activated in alzheimer’s disease. J Cell Biol. 2005;171(1):87–98.
Article PubMed PubMed Central CAS Google Scholar
Lipinski MM et al. Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease. Proceedings of the National Academy of Sciences, 2010;107(32):14164–14169.
Reddy PH, Oliver DM. Amyloid Beta and phosphorylated Tau-Induced defective autophagy and mitophagy in alzheimer’s disease. Cells. 2019;8(5):488.
Article PubMed PubMed Central CAS Google Scholar
Leng F, Edison P. Neuroinflammation and microglial activation in alzheimer disease: where do we go from here? Nat Reviews Neurol. 2021;17(3):157–72.
Terai K, Matsuo A, McGeer PL. Enhancement of immunoreactivity for NF-κB in the hippocampal formation and cerebral cortex of alzheimer’s disease. Brain Res. 1996;735(1):159–68.
Article PubMed CAS Google Scholar
Kaltschmidt B, et al. Transcription factor NF-κB is activated in primary neurons by amyloid β peptides and in neurons surrounding early plaques from patients with alzheimer disease. Proc Natl Acad Sci. 1997;94(6):2642–7.
Article PubMed PubMed Central CAS Google Scholar
Heneka MT, Kummer MP, Latz E. Innate immune activation in neurodegenerative disease. Nat Rev Immunol. 2014;14(7):463–77.
Article PubMed CAS Google Scholar
Gerakis Y, et al. The ufmylation system in proteostasis and beyond. Trends Cell Biol. 2019;29(12):974–86.
Article PubMed PubMed Central CAS Google Scholar
Witting KF, Mulder MPC. Highly specialized ubiquitin-like modifications: shedding light into the UFM1 enigma. Biomolecules. 2021;11(2):255.
Article PubMed PubMed Central CAS Google Scholar
Millrine D, Peter JJ, Kulathu Y. A guide to ufmylation, an emerging posttranslational modification. FEBS J. 2023;290(21):5040–56.
Article PubMed PubMed Central CAS Google Scholar
Zhou X, et al. UFMylation: a ubiquitin-like modification. Trends Biochem Sci. 2023;49(1):52–67.
Komatsu M, et al. A novel protein-conjugating system for Ufm1, a ubiquitin-fold modifier. EMBO J. 2004;23(9):1977–86.
Article PubMed PubMed Central CAS Google Scholar
Yang S, Moy N, Yang R. The UFM1 conjugation system in mammalian development. Dev Dyn. 2023;252(7):976–85.
Article PubMed CAS Google Scholar
Nahorski MS, et al. Biallelic UFM1 and UFC1 mutations expand the essential role of ufmylation in brain development. Brain. 2018;141(7):1934–45.
Article PubMed PubMed Central Google Scholar
Muona M, et al. Biallelic variants in UBA5 link dysfunctional UFM1 ubiquitin-like modifier pathway to severe infantile-onset encephalopathy. Am J Hum Genet. 2016;99(3):683–94.
Article PubMed PubMed Central CAS Google Scholar
Ni M, et al. A pathogenic UFSP2 variant in an autosomal recessive form of pediatric neurodevelopmental anomalies and epilepsy. Genet Sci. 2021;23:900–8.
Wang X, Xu X, Wang Z. The post-translational role of ufmylation in physiology and disease. Cells. 2023;12(21):2543.
Article PubMed PubMed Central CAS Google Scholar
Sasakawa H, et al. Solution structure and dynamics of Ufm1, a ubiquitin-fold modifier 1. Biochem Biophys Res Commun. 2006;343(1):21–6.
Article PubMed CAS Google Scholar
Tatsumi K, et al. A novel type of E3 ligase for the Ufm1 conjugation system. J Biol Chem. 2010;285(8):5417–27.
Article PubMed CAS Google Scholar
Banerjee S, Kumar M, Wiener R. Decrypting ufmylation: how proteins are modified with UFM1. Biomolecules. 2020;10(10):1442.
Article PubMed PubMed Central CAS Google Scholar
Kang SH, et al. Two novel ubiquitin-fold modifier 1 (Ufm1)-specific proteases, UfSP1 and UfSP2. J Biol Chem. 2007;282(8):5256–62.
Article PubMed CAS Google Scholar
Liang Q et al. Human UFSP1 translated from an upstream near-cognate initiation codon functions as an active UFM1-specific protease. Journal of Biological Chemistry, 2022;102016.
Millrine D, et al. Human UFSP1 is an active protease that regulates UFM1 maturation and ufmylation. Cell Rep. 2022;40(5):111168.
Comments (0)