Amorós JA, Esbrí JM, García-Navarro FJ et al (2014) Variations in mercury and other trace elements contents in soil and in vine leaves from the Almadén Hg-mining district. J Soils Sediment 14(4):773–777. https://doi.org/10.1007/s11368-013-0783-2
Arnold J, Gustin MS, Weisberg PJ (2018) Evidence for nonstomatal uptake of Hg by Aspen and translocation of Hg from foliage to tree rings in Austrian pine. Environ Sci Technol 52(3):1174–1182. https://doi.org/10.1021/acs.est.7b04468
Assad M, Parelle J, Cazaux D et al (2016) Mercury uptake into poplar leaves. Chemosphere 146:1–7. https://doi.org/10.1016/j.chemosphere.2015.11.103
Balarama Krishna MV, Chandrasekaran K, Karunasagar D (2010) On-line speciation of inorganic and methyl mercury in waters and fish tissues using polyaniline micro-column and flow injection-chemical vapour generation-inductively coupled plasma mass spectrometry (FI-CVG-ICPMS). Talanta 81(1):462–472. https://doi.org/10.1016/j.talanta.2009.12.024
Bargagli R (2016) Moss and lichen biomonitoring of atmospheric mercury: a review. Sci Total Environ 572:216–231. https://doi.org/10.1016/j.scitotenv.2016.07.202
Blackwell BD, Driscoll CT (2015) Deposition of mercury in forests along a montane elevation gradient. Environ Sci Technol 49(9):5363–5370. https://doi.org/10.1021/es505928w
Blum JD, Sherman LS, Johnson MW (2014) Mercury isotopes in earth and environmental sciences. Annu Rev Earth Pl Sc 42:249–269. https://doi.org/10.1146/annurev-earth-050212-124107
Blum JD, Drazen JC, Johnson MW et al (2020) Mercury isotopes identify near-surface marine mercury in deep-sea trench biota. Proc Natl Acad Sci 117(47):29292–29298. https://doi.org/10.1073/pnas.2012773117
Brahmstedt ES, Crespo CNA, Holsen TM et al (2021) Mercury distribution in an Upper St. Lawrence River wetland dominated by cattail (Typha angustifolia). Wetlands 41(8):119. https://doi.org/10.1007/s13157-021-01511-9
Cabrita MT, Duarte B, Cesário R et al (2019) Mercury mobility and effects in the salt-marsh plant Halimione portulacoides: Uptake, transport, and toxicity and tolerance mechanisms. Sci Total Environ 650:111–120. https://doi.org/10.1016/j.scitotenv.2018.08.335
Carrasco-Gil S, Siebner H, LeDuc DL et al (2013) Mercury localization and speciation in plants grown hydroponically or in a natural environment. Environ Sci Technol 47(7):3082–3090. https://doi.org/10.1021/es303310t
Chai L, Zhou Y, Wang X (2022) Impact of global warming on regional cycling of mercury and persistent organic pollutants on the Tibetan Plateau: current progress and future prospects. Environ Sci-Proc Imp 24(10):1616–1630. https://doi.org/10.1039/D1EM00550B
Chattopadhyay S, Fimmen RL, Yates BJ et al (2012) Phytoremediation of mercury- and methyl mercury-contaminated sediments by water Hyacinth (Eichhornia crassipes). Int J Phytoremediat 14(2):142–161. https://doi.org/10.1080/15226514.2010.525557
Chellman N, Csank A, Gustin MS et al (2020) Comparison of co-located ice-core and tree-ring mercury records indicates potential radial translocation of mercury in whitebark pine. Sci Total Environ 743:140695. https://doi.org/10.1016/j.scitotenv.2020.140695
Chiarantini L, Rimondi V, Benvenuti M et al (2016) Black pine (Pinus nigra) barks as biomonitors of airborne mercury pollution. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2016.06.029
Chiarantini L, Rimondi V, Bardelli F et al (2017) Mercury speciation in Pinus nigra barks from Monte Amiata (Italy): an X-ray absorption spectroscopy study. Environ Pollut 227:83–88. https://doi.org/10.1016/j.envpol.2017.04.038
Converse AD, Riscassi AL, Scanlon TM (2010) Seasonal variability in gaseous mercury fluxes measured in a high-elevation meadow. Atmospheric Environ 44(18):2176–2185. https://doi.org/10.1016/j.atmosenv.2010.03.024
Correia RRS, de Oliveira DCM, Guimarães JRD (2012) Total mercury distribution and volatilization in microcosms with and without the aquatic macrophyte Eichhornia Crassipes. Aquat Geochem 18(5):421–432. https://doi.org/10.1007/s10498-012-9164-5
Cui L, Feng X, Lin CJ et al (2014) Accumulation and translocation of 198Hg in four crop species. Environ Toxicol and Chem 33(2):334–340. https://doi.org/10.1002/etc.2443
Dastoor A, Angot H, Bieser J et al (2022) Arctic mercury cycling. Nat Rev Earth Env 3(4):270–286. https://doi.org/10.1038/s43017-022-00269-w
Dennis KK, Uppal K, Liu KH et al (2019) Phytochelatin database: a resource for phytochelatin complexes of nutritional and environmental metals. Database. https://doi.org/10.1093/database/baz083
Dołęgowska S, Migaszewski ZM (2015) Plant sampling uncertainty: a critical review based on moss studies. Environ Rev 23(2):151–160. https://doi.org/10.1139/er-2014-0052
Dombaiova R (2005) Mercury and methylmercury in plants from differently contaminated sites in Slovakia. Plant Soil Environ 51(10):456–463. https://doi.org/10.17221/3617-PSE
Du H, Wang X, Yuan W et al (2023) Elevated mercury deposition, accumulation, and migration in a Karst forest. Environ Sci Technol 57(45):17490–17500. https://doi.org/10.1021/acs.est.3c05409
Dwivedi S, Srivastava S, Mishra S et al (2008) Screening of native plants and algae growing on fly-ash affected areas near National Thermal Power Corporation, Tanda, Uttar Pradesh, India for accumulation of toxic heavy metals. J Hazard Mater 158(2):359–365. https://doi.org/10.1016/j.jhazmat.2008.01.081
Fritsche J, Obrist D, Zeeman MJ et al (2008) Elemental mercury fluxes over a sub-alpine grassland determined with two micrometeorological methods. Atmos Environ 42(13):2922–2933. https://doi.org/10.1016/j.atmosenv.2007.12.055
Fu X, Zhu W, Zhang H et al (2016) Depletion of atmospheric gaseous elemental mercury by plant uptake at Mt. Changbai Northeast, China. Atmos Chem Phys 16(20):12861–12873. https://doi.org/10.5194/acp-16-12861-2016
Gentès S, Taupiac J, Colin Y et al (2017) Bacterial periphytic communities related to mercury methylation within aquatic plant roots from a temperate freshwater lake (South-Western France). Environ Sci Pollut R 24(23):19223–19233. https://doi.org/10.1007/s11356-017-9597-x
Gerson JR, Driscoll CT (2016) Is mercury in a remote forested watershed of the Adirondack Mountains responding to recent decreases in emissions? Environ Sci Technol 50(20):10943–10950. https://doi.org/10.1021/acs.est.6b02127
Ghori NH, Ghori T, Hayat MQ et al (2019) Heavy metal stress and responses in plants. Int J Environ Sci Te 16(3):1807–1828. https://doi.org/10.1007/s13762-019-02215-8
Glauser E, Wohlgemuth L, Conen F et al (2022) Total mercury accumulation in aboveground parts of maize plants (Zea mays) throughout a growing season. J Plant Interact 17(1):239–243. https://doi.org/10.1080/17429145.2022.2028914
Graydon JA, St. Louis VL, Hintelmann H et al (2008) Long-term wet and dry deposition of total and methyl mercury in the remote boreal ecoregion of Canada. Environ Sci Technol 42(22):8345–8351. https://doi.org/10.1021/es801056j
Guo P, Du H, Wang D et al (2021) Effects of mercury stress on methylmercury production in rice rhizosphere, methylmercury uptake in rice and physiological changes of leaves. Sci Total Environ 765:142682. https://doi.org/10.1016/j.scitotenv.2020.142682
Gustin MS, Ingle B, Dunham-Cheatham SM (2022) Further investigations into the use of tree rings as archives of atmospheric mercury concentrations. Biogeochemistry 158(2):167–180. https://doi.org/10.1007/s10533-022-00892-1
Hao YY, Zhu YJ, Yan RQ et al (2022) Important roles of thiols in methylmercury uptake and translocation by rice plants. Environ Sci Technol 56(10):6765–6773.
Comments (0)