The uptake and in-vivo migration of Hg by plants: a critical review

Amorós JA, Esbrí JM, García-Navarro FJ et al (2014) Variations in mercury and other trace elements contents in soil and in vine leaves from the Almadén Hg-mining district. J Soils Sediment 14(4):773–777. https://doi.org/10.1007/s11368-013-0783-2

Arnold J, Gustin MS, Weisberg PJ (2018) Evidence for nonstomatal uptake of Hg by Aspen and translocation of Hg from foliage to tree rings in Austrian pine. Environ Sci Technol 52(3):1174–1182. https://doi.org/10.1021/acs.est.7b04468

Article  CAS  Google Scholar 

Assad M, Parelle J, Cazaux D et al (2016) Mercury uptake into poplar leaves. Chemosphere 146:1–7. https://doi.org/10.1016/j.chemosphere.2015.11.103

Article  CAS  Google Scholar 

Balarama Krishna MV, Chandrasekaran K, Karunasagar D (2010) On-line speciation of inorganic and methyl mercury in waters and fish tissues using polyaniline micro-column and flow injection-chemical vapour generation-inductively coupled plasma mass spectrometry (FI-CVG-ICPMS). Talanta 81(1):462–472. https://doi.org/10.1016/j.talanta.2009.12.024

Article  CAS  Google Scholar 

Bargagli R (2016) Moss and lichen biomonitoring of atmospheric mercury: a review. Sci Total Environ 572:216–231. https://doi.org/10.1016/j.scitotenv.2016.07.202

Article  CAS  Google Scholar 

Blackwell BD, Driscoll CT (2015) Deposition of mercury in forests along a montane elevation gradient. Environ Sci Technol 49(9):5363–5370. https://doi.org/10.1021/es505928w

Article  CAS  Google Scholar 

Blum JD, Sherman LS, Johnson MW (2014) Mercury isotopes in earth and environmental sciences. Annu Rev Earth Pl Sc 42:249–269. https://doi.org/10.1146/annurev-earth-050212-124107

Article  CAS  Google Scholar 

Blum JD, Drazen JC, Johnson MW et al (2020) Mercury isotopes identify near-surface marine mercury in deep-sea trench biota. Proc Natl Acad Sci 117(47):29292–29298. https://doi.org/10.1073/pnas.2012773117

Article  CAS  Google Scholar 

Brahmstedt ES, Crespo CNA, Holsen TM et al (2021) Mercury distribution in an Upper St. Lawrence River wetland dominated by cattail (Typha angustifolia). Wetlands 41(8):119. https://doi.org/10.1007/s13157-021-01511-9

Article  Google Scholar 

Cabrita MT, Duarte B, Cesário R et al (2019) Mercury mobility and effects in the salt-marsh plant Halimione portulacoides: Uptake, transport, and toxicity and tolerance mechanisms. Sci Total Environ 650:111–120. https://doi.org/10.1016/j.scitotenv.2018.08.335

Article  CAS  Google Scholar 

Carrasco-Gil S, Siebner H, LeDuc DL et al (2013) Mercury localization and speciation in plants grown hydroponically or in a natural environment. Environ Sci Technol 47(7):3082–3090. https://doi.org/10.1021/es303310t

Article  CAS  Google Scholar 

Chai L, Zhou Y, Wang X (2022) Impact of global warming on regional cycling of mercury and persistent organic pollutants on the Tibetan Plateau: current progress and future prospects. Environ Sci-Proc Imp 24(10):1616–1630. https://doi.org/10.1039/D1EM00550B

Article  CAS  Google Scholar 

Chattopadhyay S, Fimmen RL, Yates BJ et al (2012) Phytoremediation of mercury- and methyl mercury-contaminated sediments by water Hyacinth (Eichhornia crassipes). Int J Phytoremediat 14(2):142–161. https://doi.org/10.1080/15226514.2010.525557

Article  Google Scholar 

Chellman N, Csank A, Gustin MS et al (2020) Comparison of co-located ice-core and tree-ring mercury records indicates potential radial translocation of mercury in whitebark pine. Sci Total Environ 743:140695. https://doi.org/10.1016/j.scitotenv.2020.140695

Article  CAS  Google Scholar 

Chiarantini L, Rimondi V, Benvenuti M et al (2016) Black pine (Pinus nigra) barks as biomonitors of airborne mercury pollution. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2016.06.029

Article  Google Scholar 

Chiarantini L, Rimondi V, Bardelli F et al (2017) Mercury speciation in Pinus nigra barks from Monte Amiata (Italy): an X-ray absorption spectroscopy study. Environ Pollut 227:83–88. https://doi.org/10.1016/j.envpol.2017.04.038

Article  CAS  Google Scholar 

Converse AD, Riscassi AL, Scanlon TM (2010) Seasonal variability in gaseous mercury fluxes measured in a high-elevation meadow. Atmospheric Environ 44(18):2176–2185. https://doi.org/10.1016/j.atmosenv.2010.03.024

Article  CAS  Google Scholar 

Correia RRS, de Oliveira DCM, Guimarães JRD (2012) Total mercury distribution and volatilization in microcosms with and without the aquatic macrophyte Eichhornia Crassipes. Aquat Geochem 18(5):421–432. https://doi.org/10.1007/s10498-012-9164-5

Article  CAS  Google Scholar 

Cui L, Feng X, Lin CJ et al (2014) Accumulation and translocation of 198Hg in four crop species. Environ Toxicol and Chem 33(2):334–340. https://doi.org/10.1002/etc.2443

Article  CAS  Google Scholar 

Dastoor A, Angot H, Bieser J et al (2022) Arctic mercury cycling. Nat Rev Earth Env 3(4):270–286. https://doi.org/10.1038/s43017-022-00269-w

Article  CAS  Google Scholar 

Dennis KK, Uppal K, Liu KH et al (2019) Phytochelatin database: a resource for phytochelatin complexes of nutritional and environmental metals. Database. https://doi.org/10.1093/database/baz083

Article  Google Scholar 

Dołęgowska S, Migaszewski ZM (2015) Plant sampling uncertainty: a critical review based on moss studies. Environ Rev 23(2):151–160. https://doi.org/10.1139/er-2014-0052

Article  Google Scholar 

Dombaiova R (2005) Mercury and methylmercury in plants from differently contaminated sites in Slovakia. Plant Soil Environ 51(10):456–463. https://doi.org/10.17221/3617-PSE

Article  CAS  Google Scholar 

Du H, Wang X, Yuan W et al (2023) Elevated mercury deposition, accumulation, and migration in a Karst forest. Environ Sci Technol 57(45):17490–17500. https://doi.org/10.1021/acs.est.3c05409

Article  CAS  Google Scholar 

Dwivedi S, Srivastava S, Mishra S et al (2008) Screening of native plants and algae growing on fly-ash affected areas near National Thermal Power Corporation, Tanda, Uttar Pradesh, India for accumulation of toxic heavy metals. J Hazard Mater 158(2):359–365. https://doi.org/10.1016/j.jhazmat.2008.01.081

Article  CAS  Google Scholar 

Fritsche J, Obrist D, Zeeman MJ et al (2008) Elemental mercury fluxes over a sub-alpine grassland determined with two micrometeorological methods. Atmos Environ 42(13):2922–2933. https://doi.org/10.1016/j.atmosenv.2007.12.055

Article  CAS  Google Scholar 

Fu X, Zhu W, Zhang H et al (2016) Depletion of atmospheric gaseous elemental mercury by plant uptake at Mt. Changbai Northeast, China. Atmos Chem Phys 16(20):12861–12873. https://doi.org/10.5194/acp-16-12861-2016

Article  CAS  Google Scholar 

Gentès S, Taupiac J, Colin Y et al (2017) Bacterial periphytic communities related to mercury methylation within aquatic plant roots from a temperate freshwater lake (South-Western France). Environ Sci Pollut R 24(23):19223–19233. https://doi.org/10.1007/s11356-017-9597-x

Article  CAS  Google Scholar 

Gerson JR, Driscoll CT (2016) Is mercury in a remote forested watershed of the Adirondack Mountains responding to recent decreases in emissions? Environ Sci Technol 50(20):10943–10950. https://doi.org/10.1021/acs.est.6b02127

Article  CAS  Google Scholar 

Ghori NH, Ghori T, Hayat MQ et al (2019) Heavy metal stress and responses in plants. Int J Environ Sci Te 16(3):1807–1828. https://doi.org/10.1007/s13762-019-02215-8

Article  CAS  Google Scholar 

Glauser E, Wohlgemuth L, Conen F et al (2022) Total mercury accumulation in aboveground parts of maize plants (Zea mays) throughout a growing season. J Plant Interact 17(1):239–243. https://doi.org/10.1080/17429145.2022.2028914

Article  CAS  Google Scholar 

Graydon JA, St. Louis VL, Hintelmann H et al (2008) Long-term wet and dry deposition of total and methyl mercury in the remote boreal ecoregion of Canada. Environ Sci Technol 42(22):8345–8351. https://doi.org/10.1021/es801056j

Article  CAS  Google Scholar 

Guo P, Du H, Wang D et al (2021) Effects of mercury stress on methylmercury production in rice rhizosphere, methylmercury uptake in rice and physiological changes of leaves. Sci Total Environ 765:142682. https://doi.org/10.1016/j.scitotenv.2020.142682

Article  CAS  Google Scholar 

Gustin MS, Ingle B, Dunham-Cheatham SM (2022) Further investigations into the use of tree rings as archives of atmospheric mercury concentrations. Biogeochemistry 158(2):167–180. https://doi.org/10.1007/s10533-022-00892-1

Article  CAS  Google Scholar 

Hao YY, Zhu YJ, Yan RQ et al (2022) Important roles of thiols in methylmercury uptake and translocation by rice plants. Environ Sci Technol 56(10):6765–6773.

Comments (0)

No login
gif