Nanomaterial-enhanced membranes for advanced water and wastewater treatment: a comprehensive review

Abbaszadeh M, Krizak D, Kundu S (2019) Layer-by-layer assembly of graphene oxide nanoplatelets embedded desalination membranes with improved chlorine resistance. Desalination 470:114116. https://doi.org/10.1016/j.desal.2019.114116

Article  CAS  Google Scholar 

Abdel-Fatah MA (2018) Nanofiltration systems and applications in wastewater treatment: review article. Ain Shams Eng J 9(4):3077–3092. https://doi.org/10.1016/j.asej.2018.08.001

Article  Google Scholar 

Abou Zeid S, Wang YL (2024) Advancements in ZnO-based photocatalysts for water treatment: a comprehensive review. https://www.mdpi.com/2073-4352/14/7/611

Aburabie J, Villalobos LF, Peinemann K (2017) Composite membrane formation by combination of reaction-induced and nonsolvent-induced phase separation. Macromol Mater Eng 302(9):1700131. https://doi.org/10.1002/mame.201700131

Article  CAS  Google Scholar 

Ahmed MA, Mahmoud SA, Mohamed AA (2024) Nanomaterials-modified reverse osmosis membranes: a comprehensive review. RSC Adv 14(27):18879–18906. https://doi.org/10.1039/D4RA01796J

Article  CAS  Google Scholar 

Akhter P, Nawaz S, Shafiq I, Nazir A, Shafique S, Jamil F, Park Y-K, Hussain M (2023) Efficient visible light assisted photocatalysis using ZnO/TiO2 nanocomposites. Mol Catal 535:112896. https://doi.org/10.1016/j.mcat.2022.112896

Article  CAS  Google Scholar 

Akin I, Zor E, Bingol H, Ersoz M (2014) Green synthesis of reduced graphene oxide/polyaniline composite and its application for salt rejection by polysulfone-based composite membranes. J Phys Chem B 118(21):5707–5716. https://doi.org/10.1021/jp5025894

Article  CAS  Google Scholar 

Akther N, Phuntsho S, Chen Y, Ghaffour N, Shon HK (2019) Recent advances in nanomaterial-modified polyamide thin-film composite membranes for forward osmosis processes. J Membr Sci 584:20–45. https://doi.org/10.1016/j.memsci.2019.04.064

Article  CAS  Google Scholar 

Al-Hobaib AS, Al-Sheetan KM, Shaik MR, Al-Andis NM, Al-Suhybani MS (2015) Characterization and evaluation of reverse osmosis membranes modified with Ag2O nanoparticles to improve performance. Nanoscale Res Lett 10(1):379. https://doi.org/10.1186/s11671-015-1080-3

Article  CAS  Google Scholar 

Alias SS, Harun Z, Latif ISA (2018) Characterization and performance of porous photocatalytic ceramic membranes coated with TiO2 via different dip-coating routes. J Mater Sci 53(16):11534–11552. https://doi.org/10.1007/s10853-018-2392-3

Article  CAS  Google Scholar 

Alotaibi AA, Shukla AK, Mrad MH, Alswieleh AM, Alotaibi KM (2021) Fabrication of polysulfone-surface functionalized mesoporous silica nanocomposite membranes for removal of heavy metal ions from wastewater. https://www.mdpi.com/2077-0375/11/12/935

Alsohaimi IH, Kumar M, Algamdi MS, Khan MA, Nolan K, Lawler J (2017) Antifouling hybrid ultrafiltration membranes with high selectivity fabricated from polysulfone and sulfonic acid functionalized TiO2 nanotubes. Chem Eng J 316:573–583. https://doi.org/10.1016/j.cej.2017.02.001

Article  CAS  Google Scholar 

Altammar KA (2023) A review on nanoparticles: characteristics, synthesis, applications, and challenges. Front Microbiol 14:1155622. https://doi.org/10.3389/fmicb.2023.1155622

Article  Google Scholar 

Arumugham T, Amimodu RG, Kaleekkal NJ, Rana D (2019) Nano CuO/g-C3N4 sheets-based ultrafiltration membrane with enhanced interfacial affinity, antifouling and protein separation performances for water treatment application. J Environ Sci 82:57–69. https://doi.org/10.1016/j.jes.2019.03.001

Article  CAS  Google Scholar 

Awwad M, Bilal M, Sajid M, Nawaz MS, Ihsanullah I (2023) MOF-based membranes for oil/water separation: status, challenges, and prospects. J Environ Chem Eng 11(1):109073. https://doi.org/10.1016/j.jece.2022.109073

Article  CAS  Google Scholar 

Aydin D, Gübbük İH, Ersöz M (2024) Recent advances and applications of nanostructured membranes in water purification. Turk J Chem 48(1):1–20. https://doi.org/10.55730/1300-0527.3635

Article  CAS  Google Scholar 

Ba-Abbad MM, Mahmud N, Benamor A, Mahmoudi E, Takriff MS, Mohammad AW (2024) Improved properties and salt rejection of polysulfone membrane by incorporation of hydrophilic cobalt-doped ZnO nanoparticles. Emerg Mater 7(2):509–519. https://doi.org/10.1007/s42247-023-00613-w

Article  CAS  Google Scholar 

Ben Dassi R, Chamam B, Méricq JP, Faur C, El Mir L, Trabelsi I, Heran M (2021) Novel polyvinylidene fluoride/lead-doped zinc oxide adsorptive membranes for enhancement of the removal of reactive textile dye. Int J Environ Sci Technol 18(9):2793–2804. https://doi.org/10.1007/s13762-020-03026-y

Article  CAS  Google Scholar 

Ben Dassi R, Chamam B, Méricq JP, Heran M, Faur C, El Mir L, Tizaou C, Trabelsi I (2020) Pb doped ZnO nanoparticles for the sorption of Reactive Black 5 textile azo dye|Water Science & Technology|IWA Publishing. https://iwaponline.com/wst/article/82/11/2576/77688/Pb-doped-ZnO-nanoparticles-for-the-sorption-of

Ben-Sasson M, Lu X, Bar-Zeev E, Zodrow KR, Nejati S, Qi G, Giannelis EP, Elimelech M (2014) In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation. Water Res 62:260–270. https://doi.org/10.1016/j.watres.2014.05.049

Article  CAS  Google Scholar 

Bhattacharya P, Mukherjee D, Deb N, Swarnakar S, Banerjee S (2020) Application of green synthesized ZnO nanoparticle coated ceramic ultrafiltration membrane for remediation of pharmaceutical components from synthetic water: reusability assay of treated water on seed germination. J Environ Chem Eng 8(3):103803. https://doi.org/10.1016/j.jece.2020.103803

Article  CAS  Google Scholar 

Bi R, Zhang Q, Zhang R, Su Y, Jiang Z (2018) Thin film nanocomposite membranes incorporated with graphene quantum dots for high flux and antifouling property. J Membr Sci 553:17–24. https://doi.org/10.1016/j.memsci.2018.02.010

Article  CAS  Google Scholar 

Bodzek M, Konieczny K, Kwiecinska-Mydlak A (2020) Application of nanotechnology and nanomaterials in water and wastewater treatment: membranes, photocatalysis and disinfection. Desalin Water Treat 186:88–106. https://doi.org/10.5004/dwt.2020.25231

Article  CAS  Google Scholar 

Cai L, Chen J, Liu Z, Wang H, Yang H, Ding W (2018) Magnesium oxide nanoparticles: effective agricultural antibacterial agent against Ralstonia solanacearum. Front Microbiol 9:790. https://doi.org/10.3389/fmicb.2018.00790

Article  Google Scholar 

Chamam B, Dassi RB, Jraba A, Mokni S, Trabelsi I, Heran M, Mir LE (2024) One-step Ag-doped ZnO nanoparticle synthesis for textile azo dye sorption and antibacterial activity. Euro-Mediterr J Environ Integr. https://doi.org/10.1007/s41207-024-00692-z

Article  Google Scholar 

Damiri F, Andra S, Kommineni N, Balu SK, Bulusu R, Boseila AA, Akamo DO, Ahmad Z, Khan FS, Rahman MH, Berrada M, Cavalu, S (2022) Recent advances in adsorptive nanocomposite membranes for heavy metals ion removal from contaminated water: a comprehensive review. Mater 15(15):5392. https://doi.org/10.3390/ma15155392

Darabi RR, Hosseini SP, Peyravi M, Jahanshahi M (2024) Thin-film nanocomposite forward osmosis membranes incorporated with hydrophilic TiO2/Fe3O4 nanoparticles: toward alleviated ICP. Arab J Sci Eng 1–16. https://doi.org/10.1007/s13369-024-09387-7

Deshmukh SP, Patil SM, Mullani SB, Delekar SD (2019) Silver nanoparticles as an effective disinfectant: a review. Mater Sci Eng C 97:954–965. https://doi.org/10.1016/j.msec.2018.12.102

Article  CAS  Google Scholar 

Divya S, Oh TH (2022) Polymer nanocomposite membrane for wastewater treatment: a critical review. https://www.mdpi.com/2073-4360/14/9/1732

El Jery A, Ahsan A, Sammen SSh, Shanableh A, Sain D, Ramírez-Coronel AA, Uddin MdA, Maktoof MAJ, Shafiquzzaman Md, Al-Ansari N (2023) Industrial oily wastewater treatment by microfiltration using silver nanoparticle-incorporated poly (acrylonitrile-styrene) membrane. Environ Sci Eur 35(1):64. https://doi.org/10.1186/s12302-023-00764-x

Article  CAS  Google Scholar 

Elfiky AAEA, Mubarak MF, Keshawy M, Sayed IETE, Moghny TA (2024) Novel nanofiltration membrane modified by metal oxide nanocomposite for dyes removal from wastewater. Environ Develop Sustain 26(8):19935–19957. https://doi.org/10.1007/s10668-023-03444-1

Escorcia-Díaz D, García-Mora S, Rendón-Castrillón L, Ramírez-Carmona M, Ocampo-López C (2023) Advancements in nanoparticle deposition techniques for diverse substrates: a review. Nanomaterials 13(18):2586

Article  Google Scholar 

Fang S-Y, Zhang P, Gong J-L, Tang L, Zeng G-M, Song B, Cao W-C, Li J, Ye J (2020) Construction of highly water-stable metal-organic framework UiO-66 thin-film composite membrane for dyes and antibiotics separation. Chem Eng J 385:123400. https://doi.org/10.1016/j.cej.2019.123400

Article  CAS  Google Scholar 

Farahbakhsh J, Najafi M, Golgoli M, Asif AH, Khiadani M, Razmjou A, Zargar M (2024) Microplastics and dye removal from textile wastewater using MIL-53 (Fe) metal-organic framework-based ultrafiltration membranes. Chemosphere 364:143170. https://doi.org/10.1016/j.chemosphere.2024.143170

Article  CAS  Google Scholar 

Feng H, Yuan K, Liu Y, Luo B, Wu Q, Bao X, Wang W, Ma J (2023) Recent advances in covalent organic framework-based membranes for water purification: insights into separation mechanisms and applications. Chem Eng J 474:145580. https://doi.org/10.1016/j.cej.2023.145580

Article  CAS  Google Scholar 

Ferreira AM, Roque ÉB, da Fonseca FV, Borges CP (2015) High flux microfiltration membranes with silver nanoparticles for water disinfection. Desalin Water Treat 56(13):3590–3598

Article  CAS  Google Scholar 

Gawali S, Gawali A, Reddy N, Reddy PS, Dharaskar S, Khuntia S, Sinha M, Jampa SSK (2024) Study of novel Zn-MOF-II modified polymeric membrane in wastewater treatment containing oily waste and humic acid (NOM). Water Pract Technol 19(8):3216–3236. https://doi.org/10.2166/wpt.2024.178

Article  Google Scholar 

Ghobeira R, Asadian M, Vercruysse C, Declercq H, De Geyter N, Morent R (2018) Wide-ranging diameter scale of random and highly aligned PCL fibers electrospun using controlled working parameters. Polymer 157:19–31. https://doi.org/10.1016/j.polymer.2018.10.022

Comments (0)

No login
gif